Spaces:
Sleeping
Sleeping
import streamlit as st | |
import pandas as pd | |
from transformers import pipeline, AutoConfig, AutoTokenizer, AutoModelForSeq2SeqLM, AutoModelForCausalLM, MistralForCausalLM | |
from peft import PeftModel, PeftConfig | |
#Note this should be used always in compliance with applicable laws and regulations if used with real patient data. | |
# Instantiate the Tokenizer | |
tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-v0.1", trust_remote_code=True, padding_side="left") | |
tokenizer.pad_token = tokenizer.eos_token | |
tokenizer.padding_side = 'left' | |
# Load the PEFT model | |
peft_config = PeftConfig.from_pretrained("pseudolab/K23_MiniMed") | |
peft_model = MistralForCausalLM.from_pretrained("https://huggingface.co/HuggingFaceH4/zephyr-7b-beta", trust_remote_code=True) | |
peft_model = PeftModel.from_pretrained(peft_model, "pseudolab/K23_MiniMed") | |
#Upload Patient Data | |
uploaded_file = st.file_uploader("Choose a CSV file", type="csv") | |
# Prepare the context | |
def prepare_context(data): | |
# Format the data as a string | |
data_str = data.to_string(index=False, header=False) | |
# Tokenize the data | |
input_ids = tokenizer.encode(data_str, return_tensors="pt") | |
# Truncate the input if it's too long for the model | |
max_length = tokenizer.model_max_length | |
if input_ids.shape[1] > max_length: | |
input_ids = input_ids[:, :max_length] | |
return input_ids | |
if uploaded_file is not None: | |
data = pd.read_csv(uploaded_file) | |
st.write(data) | |
# Generate text based on the context | |
context = prepare_context(data) | |
generated_text = pipeline('text-generation', model=model)(context)[0]['generated_text'] | |
st.write(generated_text) | |
# Internally prompt the model to data analyze the EHR patient data | |
prompt = "You are an Electronic Health Records analyst with nursing school training. Please analyze patient data that you are provided here. Give an organized, step-by-step, formatted health records analysis. You will always be truthful and if you do nont know the answer say you do not know." | |
if prompt: | |
# Tokenize the prompt | |
input_ids = tokenizer.encode(prompt, return_tensors="pt") | |
# Generate text based on the prompt | |
generated_text = pipeline('text-generation', model=model)(input_ids=input_ids)[0]['generated_text'] | |
st.write(generated_text) | |
else: | |
st.write("Please enter patient data") | |
else: | |
st.write("No file uploaded") |