Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -53,27 +53,20 @@ device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
53 |
base_model_id = "tiiuae/falcon-7b-instruct"
|
54 |
model_directory = "Tonic/GaiaMiniMed"
|
55 |
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
# Instantiate the Tokenizer
|
60 |
-
tokenizer = AutoTokenizer.from_pretrained(
|
61 |
# tokenizer = AutoTokenizer.from_pretrained("Tonic/mistralmed", trust_remote_code=True, padding_side="left")
|
62 |
-
tokenizer.pad_token = tokenizer.eos_token
|
63 |
-
tokenizer.padding_side = 'left'
|
64 |
-
|
65 |
|
66 |
# Load the GaiaMiniMed model with the specified configuration
|
67 |
# Load the Peft model with a specific configuration
|
68 |
# Specify the configuration class for the model
|
69 |
-
model_config = AutoConfig.from_pretrained(
|
70 |
# Load the PEFT model with the specified configuration
|
71 |
peft_model = AutoModelForCausalLM.from_pretrained(model_directory, config=model_config)
|
72 |
-
peft_model = PeftModel.from_pretrained(model=base_model_id, model_id=model_directory, trust_remote_code=True)
|
73 |
peft_model = PeftModel.from_pretrained(peft_model, model_directory)
|
74 |
|
75 |
-
|
76 |
-
|
77 |
# Specify the configuration class for the model
|
78 |
#model_config = AutoConfig.from_pretrained(base_model_id)
|
79 |
|
|
|
53 |
base_model_id = "tiiuae/falcon-7b-instruct"
|
54 |
model_directory = "Tonic/GaiaMiniMed"
|
55 |
|
|
|
|
|
|
|
56 |
# Instantiate the Tokenizer
|
57 |
+
tokenizer = AutoTokenizer.from_pretrained(base_model_id, trust_remote_code=True, padding_side="left")
|
58 |
# tokenizer = AutoTokenizer.from_pretrained("Tonic/mistralmed", trust_remote_code=True, padding_side="left")
|
59 |
+
# tokenizer.pad_token = tokenizer.eos_token
|
60 |
+
# tokenizer.padding_side = 'left'
|
|
|
61 |
|
62 |
# Load the GaiaMiniMed model with the specified configuration
|
63 |
# Load the Peft model with a specific configuration
|
64 |
# Specify the configuration class for the model
|
65 |
+
model_config = AutoConfig.from_pretrained(model_directory)
|
66 |
# Load the PEFT model with the specified configuration
|
67 |
peft_model = AutoModelForCausalLM.from_pretrained(model_directory, config=model_config)
|
|
|
68 |
peft_model = PeftModel.from_pretrained(peft_model, model_directory)
|
69 |
|
|
|
|
|
70 |
# Specify the configuration class for the model
|
71 |
#model_config = AutoConfig.from_pretrained(base_model_id)
|
72 |
|