Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -5,18 +5,6 @@ import gradio as gr
|
|
5 |
import random
|
6 |
from textwrap import wrap
|
7 |
|
8 |
-
# Define the PeftConfig
|
9 |
-
peft_config = PeftConfig(
|
10 |
-
max_length=500,
|
11 |
-
use_cache=True,
|
12 |
-
early_stopping=False,
|
13 |
-
bos_token_id=peft_model.config.bos_token_id,
|
14 |
-
eos_token_id=peft_model.config.eos_token_id,
|
15 |
-
pad_token_id=peft_model.config.eos_token_id,
|
16 |
-
temperature=0.4,
|
17 |
-
do_sample=True
|
18 |
-
)
|
19 |
-
|
20 |
# Functions to Wrap the Prompt Correctly
|
21 |
def wrap_text(text, width=90):
|
22 |
lines = text.split('\n')
|
@@ -62,21 +50,20 @@ def multimodal_prompt(user_input, system_prompt="You are an expert medical analy
|
|
62 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
63 |
|
64 |
# Use the base model's ID
|
65 |
-
base_model_id = "
|
66 |
model_directory = "Tonic/GaiaMiniMed"
|
67 |
|
68 |
# Instantiate the Tokenizer
|
69 |
-
tokenizer = AutoTokenizer.from_pretrained("
|
70 |
# tokenizer = AutoTokenizer.from_pretrained("Tonic/mistralmed", trust_remote_code=True, padding_side="left")
|
71 |
tokenizer.pad_token = tokenizer.eos_token
|
72 |
tokenizer.padding_side = 'left'
|
73 |
|
74 |
# Load the GaiaMiniMed model with the specified configuration
|
75 |
# Load the Peft model with a specific configuration
|
76 |
-
peft_model = PeftModel.from_pretrained("Tonic/GaiaMiniMed"
|
77 |
peft_model = AutoModelForCausalLM.from_pretrained("tiiuae/falcon-7b-instruct")
|
78 |
-
|
79 |
-
peft_model = peft_model.to_bettertransformer("tiiuae/falcon-7b-instruct")
|
80 |
|
81 |
|
82 |
# Specify the configuration class for the model
|
|
|
5 |
import random
|
6 |
from textwrap import wrap
|
7 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
# Functions to Wrap the Prompt Correctly
|
9 |
def wrap_text(text, width=90):
|
10 |
lines = text.split('\n')
|
|
|
50 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
51 |
|
52 |
# Use the base model's ID
|
53 |
+
base_model_id = "tiiuae/falcon-7b-instruct"
|
54 |
model_directory = "Tonic/GaiaMiniMed"
|
55 |
|
56 |
# Instantiate the Tokenizer
|
57 |
+
tokenizer = AutoTokenizer.from_pretrained("tiiuae/falcon-7b-instruct", trust_remote_code=True, padding_side="left")
|
58 |
# tokenizer = AutoTokenizer.from_pretrained("Tonic/mistralmed", trust_remote_code=True, padding_side="left")
|
59 |
tokenizer.pad_token = tokenizer.eos_token
|
60 |
tokenizer.padding_side = 'left'
|
61 |
|
62 |
# Load the GaiaMiniMed model with the specified configuration
|
63 |
# Load the Peft model with a specific configuration
|
64 |
+
peft_model = PeftModel.from_pretrained("Tonic/GaiaMiniMed")
|
65 |
peft_model = AutoModelForCausalLM.from_pretrained("tiiuae/falcon-7b-instruct")
|
66 |
+
peft_model = PeftModel.from_pretrained(peft_model, "Tonic/GaiaMiniMed")
|
|
|
67 |
|
68 |
|
69 |
# Specify the configuration class for the model
|