Spaces:
Paused
Paused
import gradio as gr | |
from transformers import BertForQuestionAnswering | |
from transformers import BertTokenizerFast | |
import torch | |
from nltk.tokenize import word_tokenize | |
import timm | |
tokenizer = BertTokenizerFast.from_pretrained('bert-base-uncased') | |
model = timm.create_model('hf_hub:pseudolab/AI_Tutor_BERT', pretrained=True) | |
#model = BertForQuestionAnswering.from_pretrained("bert-base-uncased") | |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
# def get_prediction(context, question): | |
# inputs = tokenizer.encode_plus(question, context, return_tensors='pt').to(device) | |
# outputs = model(**inputs) | |
# answer_start = torch.argmax(outputs[0]) | |
# answer_end = torch.argmax(outputs[1]) + 1 | |
# answer = tokenizer.convert_tokens_to_string(tokenizer.convert_ids_to_tokens(inputs['input_ids'][0][answer_start:answer_end])) | |
# return answer | |
# def question_answer(context, question): | |
# prediction = get_prediction(context,question) | |
# return prediction | |
def split(text): | |
context, question = '', '' | |
act = False | |
tmp = '' | |
for t in text: | |
tmp += t | |
if len(tmp) == 4: | |
tmp = tmp[1:] | |
if tmp == '///': | |
act = True | |
if act == True: | |
question += t | |
if act == False: | |
context += t | |
return context[:-2], question[1:] | |
# def greet(texts): | |
# context, question = split(texts) | |
# answer = question_answer(context, question) | |
# return answer | |
def greet(text): | |
context, question = split(text) | |
# answer = question_answer(context, question) | |
return context | |
iface = gr.Interface(fn=greet, inputs="text", outputs="text") | |
iface.launch() |