Spaces:
Sleeping
Sleeping
| import pandas as pd | |
| import numpy as np | |
| #from matplotlib import pyplot as plt | |
| #import seaborn as sns | |
| import sklearn | |
| from sklearn.preprocessing import RobustScaler, StandardScaler, OneHotEncoder, OrdinalEncoder, PowerTransformer | |
| from sklearn.compose import ColumnTransformer | |
| from sklearn.pipeline import Pipeline | |
| from sklearn.model_selection import train_test_split | |
| from sklearn.linear_model import LinearRegression | |
| import pickle | |
| import streamlit as st | |
| st.image("https://www.innomatics.in/wp-content/uploads/2023/01/Innomatics-Logo1.png") | |
| st.title("Diamond Price Prediction") | |
| carat = st.number_input("Enter the carat value") | |
| cut = st.text_input("Enter the cut of the diamond") | |
| color = st.text_input("Enter the color code of the diamond") | |
| clarity = st.text_input("Enter the clarity code") | |
| depth = st.number_input("Enter the depth of the diamond") | |
| table = st.number_input("Enter the table value") | |
| x = st.number_input("Enter the length of diamond") | |
| y = st.number_input("Enter the width of the diamond") | |
| z = st.number_input("Enter the z of the diamond") | |
| model_1 = pickle.load(open(r"estimator1.pkl","rb")) #pickle file path | |
| if st.button("Submit"): | |
| result = model_1.predict([[carat,cut,color,clarity,depth,table,x,y,z]]) | |
| st.write(f"The predicted price of the diamond is {result}") |