Spaces:
Running
on
L4
Running
on
L4
import math | |
import jax | |
import jax.numpy as jnp | |
import flax.linen as nn | |
from jaxtyping import Array, ArrayLike, PyTreeDef | |
import numpy as np | |
from utils import interpolate_grid | |
class Hypernetwork(nn.Module): | |
encoder: nn.Module | |
refine: nn.Module | |
output_params_shape: list[tuple] # e.g. [(16,), (32, 32), ...] | |
tree_def: PyTreeDef # used to reconstruct the parameter sets | |
def setup(self): | |
# one layer 1x1 conv to calculate field params, as in SIREN paper | |
output_size = sum(math.prod(s) for s in self.output_params_shape) | |
self.out_conv = nn.Conv(output_size, kernel_size=(1, 1), use_bias=True) | |
def get_encoding(self, source: ArrayLike, training=False) -> Array: | |
"""Convenience method for whole-image evaluation""" | |
return self.refine(self.encoder(source, training), training) | |
def get_params_at_coords(self, encoding: ArrayLike, coords: ArrayLike) -> Array: | |
encoding = interpolate_grid(coords, encoding) | |
phi_params = self.out_conv(encoding) | |
# reshape to output params shape | |
phi_params = jnp.split( | |
phi_params, np.cumsum([math.prod(s) for s in self.output_params_shape[:-1]]), axis=-1) | |
phi_params = [jnp.reshape(p, p.shape[:-1] + s) for p, s in | |
zip(phi_params, self.output_params_shape)] | |
return jax.tree_util.tree_unflatten(self.tree_def, phi_params) | |
def __call__(self, source: ArrayLike, target_coords: ArrayLike, training=False) -> Array: | |
encoding = self.get_encoding(source, training) | |
return self.get_params_at_coords(encoding, target_coords) | |