Spaces:
Running
on
Zero
Running
on
Zero
# Run this script to convert the Stable Cascade model weights to a diffusers pipeline. | |
import argparse | |
import json | |
import os | |
from contextlib import nullcontext | |
import torch | |
from safetensors.torch import load_file | |
from transformers import ( | |
AutoTokenizer, | |
T5EncoderModel, | |
) | |
from diffusers import ( | |
AutoencoderOobleck, | |
CosineDPMSolverMultistepScheduler, | |
StableAudioDiTModel, | |
StableAudioPipeline, | |
StableAudioProjectionModel, | |
) | |
from diffusers.models.modeling_utils import load_model_dict_into_meta | |
from diffusers.utils import is_accelerate_available | |
if is_accelerate_available(): | |
from accelerate import init_empty_weights | |
def convert_stable_audio_state_dict_to_diffusers(state_dict, num_autoencoder_layers=5): | |
projection_model_state_dict = { | |
k.replace("conditioner.conditioners.", "").replace("embedder.embedding", "time_positional_embedding"): v | |
for (k, v) in state_dict.items() | |
if "conditioner.conditioners" in k | |
} | |
# NOTE: we assume here that there's no projection layer from the text encoder to the latent space, script should be adapted a bit if there is. | |
for key, value in list(projection_model_state_dict.items()): | |
new_key = key.replace("seconds_start", "start_number_conditioner").replace( | |
"seconds_total", "end_number_conditioner" | |
) | |
projection_model_state_dict[new_key] = projection_model_state_dict.pop(key) | |
model_state_dict = {k.replace("model.model.", ""): v for (k, v) in state_dict.items() if "model.model." in k} | |
for key, value in list(model_state_dict.items()): | |
# attention layers | |
new_key = ( | |
key.replace("transformer.", "") | |
.replace("layers", "transformer_blocks") | |
.replace("self_attn", "attn1") | |
.replace("cross_attn", "attn2") | |
.replace("ff.ff", "ff.net") | |
) | |
new_key = ( | |
new_key.replace("pre_norm", "norm1") | |
.replace("cross_attend_norm", "norm2") | |
.replace("ff_norm", "norm3") | |
.replace("to_out", "to_out.0") | |
) | |
new_key = new_key.replace("gamma", "weight").replace("beta", "bias") # replace layernorm | |
# other layers | |
new_key = ( | |
new_key.replace("project", "proj") | |
.replace("to_timestep_embed", "timestep_proj") | |
.replace("timestep_features", "time_proj") | |
.replace("to_global_embed", "global_proj") | |
.replace("to_cond_embed", "cross_attention_proj") | |
) | |
# we're using diffusers implementation of time_proj (GaussianFourierProjection) which creates a 1D tensor | |
if new_key == "time_proj.weight": | |
model_state_dict[key] = model_state_dict[key].squeeze(1) | |
if "to_qkv" in new_key: | |
q, k, v = torch.chunk(model_state_dict.pop(key), 3, dim=0) | |
model_state_dict[new_key.replace("qkv", "q")] = q | |
model_state_dict[new_key.replace("qkv", "k")] = k | |
model_state_dict[new_key.replace("qkv", "v")] = v | |
elif "to_kv" in new_key: | |
k, v = torch.chunk(model_state_dict.pop(key), 2, dim=0) | |
model_state_dict[new_key.replace("kv", "k")] = k | |
model_state_dict[new_key.replace("kv", "v")] = v | |
else: | |
model_state_dict[new_key] = model_state_dict.pop(key) | |
autoencoder_state_dict = { | |
k.replace("pretransform.model.", "").replace("coder.layers.0", "coder.conv1"): v | |
for (k, v) in state_dict.items() | |
if "pretransform.model." in k | |
} | |
for key, _ in list(autoencoder_state_dict.items()): | |
new_key = key | |
if "coder.layers" in new_key: | |
# get idx of the layer | |
idx = int(new_key.split("coder.layers.")[1].split(".")[0]) | |
new_key = new_key.replace(f"coder.layers.{idx}", f"coder.block.{idx-1}") | |
if "encoder" in new_key: | |
for i in range(3): | |
new_key = new_key.replace(f"block.{idx-1}.layers.{i}", f"block.{idx-1}.res_unit{i+1}") | |
new_key = new_key.replace(f"block.{idx-1}.layers.3", f"block.{idx-1}.snake1") | |
new_key = new_key.replace(f"block.{idx-1}.layers.4", f"block.{idx-1}.conv1") | |
else: | |
for i in range(2, 5): | |
new_key = new_key.replace(f"block.{idx-1}.layers.{i}", f"block.{idx-1}.res_unit{i-1}") | |
new_key = new_key.replace(f"block.{idx-1}.layers.0", f"block.{idx-1}.snake1") | |
new_key = new_key.replace(f"block.{idx-1}.layers.1", f"block.{idx-1}.conv_t1") | |
new_key = new_key.replace("layers.0.beta", "snake1.beta") | |
new_key = new_key.replace("layers.0.alpha", "snake1.alpha") | |
new_key = new_key.replace("layers.2.beta", "snake2.beta") | |
new_key = new_key.replace("layers.2.alpha", "snake2.alpha") | |
new_key = new_key.replace("layers.1.bias", "conv1.bias") | |
new_key = new_key.replace("layers.1.weight_", "conv1.weight_") | |
new_key = new_key.replace("layers.3.bias", "conv2.bias") | |
new_key = new_key.replace("layers.3.weight_", "conv2.weight_") | |
if idx == num_autoencoder_layers + 1: | |
new_key = new_key.replace(f"block.{idx-1}", "snake1") | |
elif idx == num_autoencoder_layers + 2: | |
new_key = new_key.replace(f"block.{idx-1}", "conv2") | |
else: | |
new_key = new_key | |
value = autoencoder_state_dict.pop(key) | |
if "snake" in new_key: | |
value = value.unsqueeze(0).unsqueeze(-1) | |
if new_key in autoencoder_state_dict: | |
raise ValueError(f"{new_key} already in state dict.") | |
autoencoder_state_dict[new_key] = value | |
return model_state_dict, projection_model_state_dict, autoencoder_state_dict | |
parser = argparse.ArgumentParser(description="Convert Stable Audio 1.0 model weights to a diffusers pipeline") | |
parser.add_argument("--model_folder_path", type=str, help="Location of Stable Audio weights and config") | |
parser.add_argument("--use_safetensors", action="store_true", help="Use SafeTensors for conversion") | |
parser.add_argument( | |
"--save_directory", | |
type=str, | |
default="./tmp/stable-audio-1.0", | |
help="Directory to save a pipeline to. Will be created if it doesn't exist.", | |
) | |
parser.add_argument( | |
"--repo_id", | |
type=str, | |
default="stable-audio-1.0", | |
help="Hub organization to save the pipelines to", | |
) | |
parser.add_argument("--push_to_hub", action="store_true", help="Push to hub") | |
parser.add_argument("--variant", type=str, help="Set to bf16 to save bfloat16 weights") | |
args = parser.parse_args() | |
checkpoint_path = ( | |
os.path.join(args.model_folder_path, "model.safetensors") | |
if args.use_safetensors | |
else os.path.join(args.model_folder_path, "model.ckpt") | |
) | |
config_path = os.path.join(args.model_folder_path, "model_config.json") | |
device = "cpu" | |
if args.variant == "bf16": | |
dtype = torch.bfloat16 | |
else: | |
dtype = torch.float32 | |
with open(config_path) as f_in: | |
config_dict = json.load(f_in) | |
conditioning_dict = { | |
conditioning["id"]: conditioning["config"] for conditioning in config_dict["model"]["conditioning"]["configs"] | |
} | |
t5_model_config = conditioning_dict["prompt"] | |
# T5 Text encoder | |
text_encoder = T5EncoderModel.from_pretrained(t5_model_config["t5_model_name"]) | |
tokenizer = AutoTokenizer.from_pretrained( | |
t5_model_config["t5_model_name"], truncation=True, model_max_length=t5_model_config["max_length"] | |
) | |
# scheduler | |
scheduler = CosineDPMSolverMultistepScheduler( | |
sigma_min=0.3, | |
sigma_max=500, | |
solver_order=2, | |
prediction_type="v_prediction", | |
sigma_data=1.0, | |
sigma_schedule="exponential", | |
) | |
ctx = init_empty_weights if is_accelerate_available() else nullcontext | |
if args.use_safetensors: | |
orig_state_dict = load_file(checkpoint_path, device=device) | |
else: | |
orig_state_dict = torch.load(checkpoint_path, map_location=device) | |
model_config = config_dict["model"]["diffusion"]["config"] | |
model_state_dict, projection_model_state_dict, autoencoder_state_dict = convert_stable_audio_state_dict_to_diffusers( | |
orig_state_dict | |
) | |
with ctx(): | |
projection_model = StableAudioProjectionModel( | |
text_encoder_dim=text_encoder.config.d_model, | |
conditioning_dim=config_dict["model"]["conditioning"]["cond_dim"], | |
min_value=conditioning_dict["seconds_start"][ | |
"min_val" | |
], # assume `seconds_start` and `seconds_total` have the same min / max values. | |
max_value=conditioning_dict["seconds_start"][ | |
"max_val" | |
], # assume `seconds_start` and `seconds_total` have the same min / max values. | |
) | |
if is_accelerate_available(): | |
load_model_dict_into_meta(projection_model, projection_model_state_dict) | |
else: | |
projection_model.load_state_dict(projection_model_state_dict) | |
attention_head_dim = model_config["embed_dim"] // model_config["num_heads"] | |
with ctx(): | |
model = StableAudioDiTModel( | |
sample_size=int(config_dict["sample_size"]) | |
/ int(config_dict["model"]["pretransform"]["config"]["downsampling_ratio"]), | |
in_channels=model_config["io_channels"], | |
num_layers=model_config["depth"], | |
attention_head_dim=attention_head_dim, | |
num_key_value_attention_heads=model_config["cond_token_dim"] // attention_head_dim, | |
num_attention_heads=model_config["num_heads"], | |
out_channels=model_config["io_channels"], | |
cross_attention_dim=model_config["cond_token_dim"], | |
time_proj_dim=256, | |
global_states_input_dim=model_config["global_cond_dim"], | |
cross_attention_input_dim=model_config["cond_token_dim"], | |
) | |
if is_accelerate_available(): | |
load_model_dict_into_meta(model, model_state_dict) | |
else: | |
model.load_state_dict(model_state_dict) | |
autoencoder_config = config_dict["model"]["pretransform"]["config"] | |
with ctx(): | |
autoencoder = AutoencoderOobleck( | |
encoder_hidden_size=autoencoder_config["encoder"]["config"]["channels"], | |
downsampling_ratios=autoencoder_config["encoder"]["config"]["strides"], | |
decoder_channels=autoencoder_config["decoder"]["config"]["channels"], | |
decoder_input_channels=autoencoder_config["decoder"]["config"]["latent_dim"], | |
audio_channels=autoencoder_config["io_channels"], | |
channel_multiples=autoencoder_config["encoder"]["config"]["c_mults"], | |
sampling_rate=config_dict["sample_rate"], | |
) | |
if is_accelerate_available(): | |
load_model_dict_into_meta(autoencoder, autoencoder_state_dict) | |
else: | |
autoencoder.load_state_dict(autoencoder_state_dict) | |
# Prior pipeline | |
pipeline = StableAudioPipeline( | |
transformer=model, | |
tokenizer=tokenizer, | |
text_encoder=text_encoder, | |
scheduler=scheduler, | |
vae=autoencoder, | |
projection_model=projection_model, | |
) | |
pipeline.to(dtype).save_pretrained( | |
args.save_directory, repo_id=args.repo_id, push_to_hub=args.push_to_hub, variant=args.variant | |
) | |