Spaces:
Running
on
Zero
Running
on
Zero
import argparse | |
import torch | |
from diffusers import HunyuanDiT2DModel | |
def main(args): | |
state_dict = torch.load(args.pt_checkpoint_path, map_location="cpu") | |
if args.load_key != "none": | |
try: | |
state_dict = state_dict[args.load_key] | |
except KeyError: | |
raise KeyError( | |
f"{args.load_key} not found in the checkpoint." | |
f"Please load from the following keys:{state_dict.keys()}" | |
) | |
device = "cuda" | |
model_config = HunyuanDiT2DModel.load_config("Tencent-Hunyuan/HunyuanDiT-Diffusers", subfolder="transformer") | |
model_config[ | |
"use_style_cond_and_image_meta_size" | |
] = args.use_style_cond_and_image_meta_size ### version <= v1.1: True; version >= v1.2: False | |
# input_size -> sample_size, text_dim -> cross_attention_dim | |
for key in state_dict: | |
print("local:", key) | |
model = HunyuanDiT2DModel.from_config(model_config).to(device) | |
for key in model.state_dict(): | |
print("diffusers:", key) | |
num_layers = 40 | |
for i in range(num_layers): | |
# attn1 | |
# Wkqv -> to_q, to_k, to_v | |
q, k, v = torch.chunk(state_dict[f"blocks.{i}.attn1.Wqkv.weight"], 3, dim=0) | |
q_bias, k_bias, v_bias = torch.chunk(state_dict[f"blocks.{i}.attn1.Wqkv.bias"], 3, dim=0) | |
state_dict[f"blocks.{i}.attn1.to_q.weight"] = q | |
state_dict[f"blocks.{i}.attn1.to_q.bias"] = q_bias | |
state_dict[f"blocks.{i}.attn1.to_k.weight"] = k | |
state_dict[f"blocks.{i}.attn1.to_k.bias"] = k_bias | |
state_dict[f"blocks.{i}.attn1.to_v.weight"] = v | |
state_dict[f"blocks.{i}.attn1.to_v.bias"] = v_bias | |
state_dict.pop(f"blocks.{i}.attn1.Wqkv.weight") | |
state_dict.pop(f"blocks.{i}.attn1.Wqkv.bias") | |
# q_norm, k_norm -> norm_q, norm_k | |
state_dict[f"blocks.{i}.attn1.norm_q.weight"] = state_dict[f"blocks.{i}.attn1.q_norm.weight"] | |
state_dict[f"blocks.{i}.attn1.norm_q.bias"] = state_dict[f"blocks.{i}.attn1.q_norm.bias"] | |
state_dict[f"blocks.{i}.attn1.norm_k.weight"] = state_dict[f"blocks.{i}.attn1.k_norm.weight"] | |
state_dict[f"blocks.{i}.attn1.norm_k.bias"] = state_dict[f"blocks.{i}.attn1.k_norm.bias"] | |
state_dict.pop(f"blocks.{i}.attn1.q_norm.weight") | |
state_dict.pop(f"blocks.{i}.attn1.q_norm.bias") | |
state_dict.pop(f"blocks.{i}.attn1.k_norm.weight") | |
state_dict.pop(f"blocks.{i}.attn1.k_norm.bias") | |
# out_proj -> to_out | |
state_dict[f"blocks.{i}.attn1.to_out.0.weight"] = state_dict[f"blocks.{i}.attn1.out_proj.weight"] | |
state_dict[f"blocks.{i}.attn1.to_out.0.bias"] = state_dict[f"blocks.{i}.attn1.out_proj.bias"] | |
state_dict.pop(f"blocks.{i}.attn1.out_proj.weight") | |
state_dict.pop(f"blocks.{i}.attn1.out_proj.bias") | |
# attn2 | |
# kq_proj -> to_k, to_v | |
k, v = torch.chunk(state_dict[f"blocks.{i}.attn2.kv_proj.weight"], 2, dim=0) | |
k_bias, v_bias = torch.chunk(state_dict[f"blocks.{i}.attn2.kv_proj.bias"], 2, dim=0) | |
state_dict[f"blocks.{i}.attn2.to_k.weight"] = k | |
state_dict[f"blocks.{i}.attn2.to_k.bias"] = k_bias | |
state_dict[f"blocks.{i}.attn2.to_v.weight"] = v | |
state_dict[f"blocks.{i}.attn2.to_v.bias"] = v_bias | |
state_dict.pop(f"blocks.{i}.attn2.kv_proj.weight") | |
state_dict.pop(f"blocks.{i}.attn2.kv_proj.bias") | |
# q_proj -> to_q | |
state_dict[f"blocks.{i}.attn2.to_q.weight"] = state_dict[f"blocks.{i}.attn2.q_proj.weight"] | |
state_dict[f"blocks.{i}.attn2.to_q.bias"] = state_dict[f"blocks.{i}.attn2.q_proj.bias"] | |
state_dict.pop(f"blocks.{i}.attn2.q_proj.weight") | |
state_dict.pop(f"blocks.{i}.attn2.q_proj.bias") | |
# q_norm, k_norm -> norm_q, norm_k | |
state_dict[f"blocks.{i}.attn2.norm_q.weight"] = state_dict[f"blocks.{i}.attn2.q_norm.weight"] | |
state_dict[f"blocks.{i}.attn2.norm_q.bias"] = state_dict[f"blocks.{i}.attn2.q_norm.bias"] | |
state_dict[f"blocks.{i}.attn2.norm_k.weight"] = state_dict[f"blocks.{i}.attn2.k_norm.weight"] | |
state_dict[f"blocks.{i}.attn2.norm_k.bias"] = state_dict[f"blocks.{i}.attn2.k_norm.bias"] | |
state_dict.pop(f"blocks.{i}.attn2.q_norm.weight") | |
state_dict.pop(f"blocks.{i}.attn2.q_norm.bias") | |
state_dict.pop(f"blocks.{i}.attn2.k_norm.weight") | |
state_dict.pop(f"blocks.{i}.attn2.k_norm.bias") | |
# out_proj -> to_out | |
state_dict[f"blocks.{i}.attn2.to_out.0.weight"] = state_dict[f"blocks.{i}.attn2.out_proj.weight"] | |
state_dict[f"blocks.{i}.attn2.to_out.0.bias"] = state_dict[f"blocks.{i}.attn2.out_proj.bias"] | |
state_dict.pop(f"blocks.{i}.attn2.out_proj.weight") | |
state_dict.pop(f"blocks.{i}.attn2.out_proj.bias") | |
# switch norm 2 and norm 3 | |
norm2_weight = state_dict[f"blocks.{i}.norm2.weight"] | |
norm2_bias = state_dict[f"blocks.{i}.norm2.bias"] | |
state_dict[f"blocks.{i}.norm2.weight"] = state_dict[f"blocks.{i}.norm3.weight"] | |
state_dict[f"blocks.{i}.norm2.bias"] = state_dict[f"blocks.{i}.norm3.bias"] | |
state_dict[f"blocks.{i}.norm3.weight"] = norm2_weight | |
state_dict[f"blocks.{i}.norm3.bias"] = norm2_bias | |
# norm1 -> norm1.norm | |
# default_modulation.1 -> norm1.linear | |
state_dict[f"blocks.{i}.norm1.norm.weight"] = state_dict[f"blocks.{i}.norm1.weight"] | |
state_dict[f"blocks.{i}.norm1.norm.bias"] = state_dict[f"blocks.{i}.norm1.bias"] | |
state_dict[f"blocks.{i}.norm1.linear.weight"] = state_dict[f"blocks.{i}.default_modulation.1.weight"] | |
state_dict[f"blocks.{i}.norm1.linear.bias"] = state_dict[f"blocks.{i}.default_modulation.1.bias"] | |
state_dict.pop(f"blocks.{i}.norm1.weight") | |
state_dict.pop(f"blocks.{i}.norm1.bias") | |
state_dict.pop(f"blocks.{i}.default_modulation.1.weight") | |
state_dict.pop(f"blocks.{i}.default_modulation.1.bias") | |
# mlp.fc1 -> ff.net.0, mlp.fc2 -> ff.net.2 | |
state_dict[f"blocks.{i}.ff.net.0.proj.weight"] = state_dict[f"blocks.{i}.mlp.fc1.weight"] | |
state_dict[f"blocks.{i}.ff.net.0.proj.bias"] = state_dict[f"blocks.{i}.mlp.fc1.bias"] | |
state_dict[f"blocks.{i}.ff.net.2.weight"] = state_dict[f"blocks.{i}.mlp.fc2.weight"] | |
state_dict[f"blocks.{i}.ff.net.2.bias"] = state_dict[f"blocks.{i}.mlp.fc2.bias"] | |
state_dict.pop(f"blocks.{i}.mlp.fc1.weight") | |
state_dict.pop(f"blocks.{i}.mlp.fc1.bias") | |
state_dict.pop(f"blocks.{i}.mlp.fc2.weight") | |
state_dict.pop(f"blocks.{i}.mlp.fc2.bias") | |
# pooler -> time_extra_emb | |
state_dict["time_extra_emb.pooler.positional_embedding"] = state_dict["pooler.positional_embedding"] | |
state_dict["time_extra_emb.pooler.k_proj.weight"] = state_dict["pooler.k_proj.weight"] | |
state_dict["time_extra_emb.pooler.k_proj.bias"] = state_dict["pooler.k_proj.bias"] | |
state_dict["time_extra_emb.pooler.q_proj.weight"] = state_dict["pooler.q_proj.weight"] | |
state_dict["time_extra_emb.pooler.q_proj.bias"] = state_dict["pooler.q_proj.bias"] | |
state_dict["time_extra_emb.pooler.v_proj.weight"] = state_dict["pooler.v_proj.weight"] | |
state_dict["time_extra_emb.pooler.v_proj.bias"] = state_dict["pooler.v_proj.bias"] | |
state_dict["time_extra_emb.pooler.c_proj.weight"] = state_dict["pooler.c_proj.weight"] | |
state_dict["time_extra_emb.pooler.c_proj.bias"] = state_dict["pooler.c_proj.bias"] | |
state_dict.pop("pooler.k_proj.weight") | |
state_dict.pop("pooler.k_proj.bias") | |
state_dict.pop("pooler.q_proj.weight") | |
state_dict.pop("pooler.q_proj.bias") | |
state_dict.pop("pooler.v_proj.weight") | |
state_dict.pop("pooler.v_proj.bias") | |
state_dict.pop("pooler.c_proj.weight") | |
state_dict.pop("pooler.c_proj.bias") | |
state_dict.pop("pooler.positional_embedding") | |
# t_embedder -> time_embedding (`TimestepEmbedding`) | |
state_dict["time_extra_emb.timestep_embedder.linear_1.bias"] = state_dict["t_embedder.mlp.0.bias"] | |
state_dict["time_extra_emb.timestep_embedder.linear_1.weight"] = state_dict["t_embedder.mlp.0.weight"] | |
state_dict["time_extra_emb.timestep_embedder.linear_2.bias"] = state_dict["t_embedder.mlp.2.bias"] | |
state_dict["time_extra_emb.timestep_embedder.linear_2.weight"] = state_dict["t_embedder.mlp.2.weight"] | |
state_dict.pop("t_embedder.mlp.0.bias") | |
state_dict.pop("t_embedder.mlp.0.weight") | |
state_dict.pop("t_embedder.mlp.2.bias") | |
state_dict.pop("t_embedder.mlp.2.weight") | |
# x_embedder -> pos_embd (`PatchEmbed`) | |
state_dict["pos_embed.proj.weight"] = state_dict["x_embedder.proj.weight"] | |
state_dict["pos_embed.proj.bias"] = state_dict["x_embedder.proj.bias"] | |
state_dict.pop("x_embedder.proj.weight") | |
state_dict.pop("x_embedder.proj.bias") | |
# mlp_t5 -> text_embedder | |
state_dict["text_embedder.linear_1.bias"] = state_dict["mlp_t5.0.bias"] | |
state_dict["text_embedder.linear_1.weight"] = state_dict["mlp_t5.0.weight"] | |
state_dict["text_embedder.linear_2.bias"] = state_dict["mlp_t5.2.bias"] | |
state_dict["text_embedder.linear_2.weight"] = state_dict["mlp_t5.2.weight"] | |
state_dict.pop("mlp_t5.0.bias") | |
state_dict.pop("mlp_t5.0.weight") | |
state_dict.pop("mlp_t5.2.bias") | |
state_dict.pop("mlp_t5.2.weight") | |
# extra_embedder -> extra_embedder | |
state_dict["time_extra_emb.extra_embedder.linear_1.bias"] = state_dict["extra_embedder.0.bias"] | |
state_dict["time_extra_emb.extra_embedder.linear_1.weight"] = state_dict["extra_embedder.0.weight"] | |
state_dict["time_extra_emb.extra_embedder.linear_2.bias"] = state_dict["extra_embedder.2.bias"] | |
state_dict["time_extra_emb.extra_embedder.linear_2.weight"] = state_dict["extra_embedder.2.weight"] | |
state_dict.pop("extra_embedder.0.bias") | |
state_dict.pop("extra_embedder.0.weight") | |
state_dict.pop("extra_embedder.2.bias") | |
state_dict.pop("extra_embedder.2.weight") | |
# model.final_adaLN_modulation.1 -> norm_out.linear | |
def swap_scale_shift(weight): | |
shift, scale = weight.chunk(2, dim=0) | |
new_weight = torch.cat([scale, shift], dim=0) | |
return new_weight | |
state_dict["norm_out.linear.weight"] = swap_scale_shift(state_dict["final_layer.adaLN_modulation.1.weight"]) | |
state_dict["norm_out.linear.bias"] = swap_scale_shift(state_dict["final_layer.adaLN_modulation.1.bias"]) | |
state_dict.pop("final_layer.adaLN_modulation.1.weight") | |
state_dict.pop("final_layer.adaLN_modulation.1.bias") | |
# final_linear -> proj_out | |
state_dict["proj_out.weight"] = state_dict["final_layer.linear.weight"] | |
state_dict["proj_out.bias"] = state_dict["final_layer.linear.bias"] | |
state_dict.pop("final_layer.linear.weight") | |
state_dict.pop("final_layer.linear.bias") | |
# style_embedder | |
if model_config["use_style_cond_and_image_meta_size"]: | |
print(state_dict["style_embedder.weight"]) | |
print(state_dict["style_embedder.weight"].shape) | |
state_dict["time_extra_emb.style_embedder.weight"] = state_dict["style_embedder.weight"][0:1] | |
state_dict.pop("style_embedder.weight") | |
model.load_state_dict(state_dict) | |
from diffusers import HunyuanDiTPipeline | |
if args.use_style_cond_and_image_meta_size: | |
pipe = HunyuanDiTPipeline.from_pretrained( | |
"Tencent-Hunyuan/HunyuanDiT-Diffusers", transformer=model, torch_dtype=torch.float32 | |
) | |
else: | |
pipe = HunyuanDiTPipeline.from_pretrained( | |
"Tencent-Hunyuan/HunyuanDiT-v1.2-Diffusers", transformer=model, torch_dtype=torch.float32 | |
) | |
pipe.to("cuda") | |
pipe.to(dtype=torch.float32) | |
if args.save: | |
pipe.save_pretrained(args.output_checkpoint_path) | |
# ### NOTE: HunyuanDiT supports both Chinese and English inputs | |
prompt = "一个宇航员在骑马" | |
# prompt = "An astronaut riding a horse" | |
generator = torch.Generator(device="cuda").manual_seed(0) | |
image = pipe( | |
height=1024, width=1024, prompt=prompt, generator=generator, num_inference_steps=25, guidance_scale=5.0 | |
).images[0] | |
image.save("img.png") | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser() | |
parser.add_argument( | |
"--save", default=True, type=bool, required=False, help="Whether to save the converted pipeline or not." | |
) | |
parser.add_argument( | |
"--pt_checkpoint_path", default=None, type=str, required=True, help="Path to the .pt pretrained model." | |
) | |
parser.add_argument( | |
"--output_checkpoint_path", | |
default=None, | |
type=str, | |
required=False, | |
help="Path to the output converted diffusers pipeline.", | |
) | |
parser.add_argument( | |
"--load_key", default="none", type=str, required=False, help="The key to load from the pretrained .pt file" | |
) | |
parser.add_argument( | |
"--use_style_cond_and_image_meta_size", | |
type=bool, | |
default=False, | |
help="version <= v1.1: True; version >= v1.2: False", | |
) | |
args = parser.parse_args() | |
main(args) | |