Spaces:
Running
on
Zero
Running
on
Zero
initial commit
Browse files- .gitignore +3 -0
- README.md +23 -7
- app.py +828 -0
- extrude.py +332 -0
- files/basrelief/coin.jpg +3 -0
- files/basrelief/einstein.jpg +3 -0
- files/basrelief/food.jpeg +3 -0
- files/image/arc.jpeg +3 -0
- files/image/bee.jpg +3 -0
- files/image/berries.jpeg +3 -0
- files/image/butterfly.jpeg +3 -0
- files/image/cat.jpg +3 -0
- files/image/concert.jpeg +3 -0
- files/image/dog.jpeg +3 -0
- files/image/doughnuts.jpeg +3 -0
- files/image/einstein.jpg +3 -0
- files/image/food.jpeg +3 -0
- files/image/glasses.jpeg +3 -0
- files/image/house.jpg +3 -0
- files/image/lake.jpeg +3 -0
- files/image/marigold.jpeg +3 -0
- files/image/portrait_1.jpeg +3 -0
- files/image/portrait_2.jpeg +3 -0
- files/image/pumpkins.jpg +3 -0
- files/image/puzzle.jpeg +3 -0
- files/image/road.jpg +3 -0
- files/image/scientists.jpg +3 -0
- files/image/surfboards.jpeg +3 -0
- files/image/surfer.jpeg +3 -0
- files/image/swings.jpg +3 -0
- files/image/switzerland.jpeg +3 -0
- files/image/teamwork.jpeg +3 -0
- files/image/wave.jpeg +3 -0
- files/video/cab.mp4 +3 -0
- files/video/elephant.mp4 +3 -0
- files/video/obama.mp4 +3 -0
- marigold_depth_estimation_lcm.py +702 -0
- marigold_logo_square.jpg +3 -0
- requirements.txt +15 -0
.gitignore
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
.idea
|
2 |
+
.DS_Store
|
3 |
+
__pycache__
|
README.md
CHANGED
@@ -1,13 +1,29 @@
|
|
1 |
---
|
2 |
-
title: Marigold
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
sdk: gradio
|
7 |
sdk_version: 4.22.0
|
8 |
app_file: app.py
|
9 |
-
pinned:
|
10 |
-
license:
|
|
|
|
|
|
|
11 |
---
|
12 |
|
13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
title: Marigold-LCM Depth Estimation
|
3 |
+
emoji: 🏵️
|
4 |
+
colorFrom: blue
|
5 |
+
colorTo: red
|
6 |
sdk: gradio
|
7 |
sdk_version: 4.22.0
|
8 |
app_file: app.py
|
9 |
+
pinned: true
|
10 |
+
license: cc-by-sa-4.0
|
11 |
+
models:
|
12 |
+
- prs-eth/marigold-v1-0
|
13 |
+
- prs-eth/marigold-lcm-v1-0
|
14 |
---
|
15 |
|
16 |
+
This is a demo of Marigold-LCM, the state-of-the-art depth estimator for images in the wild.
|
17 |
+
It combines the power of the original Marigold 10-step estimator and the Latent Consistency Models, delivering high-quality results in as little as one step.
|
18 |
+
Find out more in our paper titled ["Repurposing Diffusion-Based Image Generators for Monocular Depth Estimation"](https://arxiv.org/abs/2312.02145)
|
19 |
+
|
20 |
+
```
|
21 |
+
@misc{ke2023repurposing,
|
22 |
+
title={Repurposing Diffusion-Based Image Generators for Monocular Depth Estimation},
|
23 |
+
author={Bingxin Ke and Anton Obukhov and Shengyu Huang and Nando Metzger and Rodrigo Caye Daudt and Konrad Schindler},
|
24 |
+
year={2023},
|
25 |
+
eprint={2312.02145},
|
26 |
+
archivePrefix={arXiv},
|
27 |
+
primaryClass={cs.CV}
|
28 |
+
}
|
29 |
+
```
|
app.py
ADDED
@@ -0,0 +1,828 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import functools
|
2 |
+
import os
|
3 |
+
import shutil
|
4 |
+
import zipfile
|
5 |
+
from io import BytesIO
|
6 |
+
|
7 |
+
import gradio as gr
|
8 |
+
import imageio as imageio
|
9 |
+
import numpy as np
|
10 |
+
import torch as torch
|
11 |
+
from PIL import Image
|
12 |
+
from diffusers import UNet2DConditionModel, LCMScheduler
|
13 |
+
from gradio_imageslider import ImageSlider
|
14 |
+
from huggingface_hub import login
|
15 |
+
from tqdm import tqdm
|
16 |
+
|
17 |
+
from extrude import extrude_depth_3d
|
18 |
+
from marigold_depth_estimation_lcm import MarigoldDepthConsistencyPipeline
|
19 |
+
|
20 |
+
default_seed = 2024
|
21 |
+
|
22 |
+
default_image_denoise_steps = 4
|
23 |
+
default_image_ensemble_size = 1
|
24 |
+
default_image_processing_res = 768
|
25 |
+
default_image_reproducuble = True
|
26 |
+
|
27 |
+
default_video_depth_latent_init_strength = 0.1
|
28 |
+
default_video_denoise_steps = 1
|
29 |
+
default_video_ensemble_size = 1
|
30 |
+
default_video_processing_res = 768
|
31 |
+
default_video_out_fps = 15
|
32 |
+
default_video_out_max_frames = 100
|
33 |
+
|
34 |
+
default_bas_plane_near = 0.0
|
35 |
+
default_bas_plane_far = 1.0
|
36 |
+
default_bas_embossing = 20
|
37 |
+
default_bas_denoise_steps = 4
|
38 |
+
default_bas_ensemble_size = 1
|
39 |
+
default_bas_processing_res = 768
|
40 |
+
default_bas_size_longest_px = 512
|
41 |
+
default_bas_size_longest_cm = 10
|
42 |
+
default_bas_filter_size = 3
|
43 |
+
default_bas_frame_thickness = 5
|
44 |
+
default_bas_frame_near = 1
|
45 |
+
default_bas_frame_far = 1
|
46 |
+
|
47 |
+
|
48 |
+
def process_image(
|
49 |
+
pipe,
|
50 |
+
path_input,
|
51 |
+
denoise_steps=default_image_denoise_steps,
|
52 |
+
ensemble_size=default_image_ensemble_size,
|
53 |
+
processing_res=default_image_processing_res,
|
54 |
+
reproducible=default_image_reproducuble,
|
55 |
+
):
|
56 |
+
input_image = Image.open(path_input)
|
57 |
+
|
58 |
+
pipe_out = pipe(
|
59 |
+
input_image,
|
60 |
+
denoising_steps=denoise_steps,
|
61 |
+
ensemble_size=ensemble_size,
|
62 |
+
processing_res=processing_res,
|
63 |
+
batch_size=1 if processing_res == 0 else 0,
|
64 |
+
seed=default_seed if reproducible else None,
|
65 |
+
show_progress_bar=False,
|
66 |
+
)
|
67 |
+
|
68 |
+
depth_pred = pipe_out.depth_np
|
69 |
+
depth_colored = pipe_out.depth_colored
|
70 |
+
depth_16bit = (depth_pred * 65535.0).astype(np.uint16)
|
71 |
+
|
72 |
+
path_output_dir = os.path.splitext(path_input)[0] + "_output"
|
73 |
+
os.makedirs(path_output_dir, exist_ok=True)
|
74 |
+
|
75 |
+
name_base = os.path.splitext(os.path.basename(path_input))[0]
|
76 |
+
path_out_fp32 = os.path.join(path_output_dir, f"{name_base}_depth_fp32.npy")
|
77 |
+
path_out_16bit = os.path.join(path_output_dir, f"{name_base}_depth_16bit.png")
|
78 |
+
path_out_vis = os.path.join(path_output_dir, f"{name_base}_depth_colored.png")
|
79 |
+
|
80 |
+
np.save(path_out_fp32, depth_pred)
|
81 |
+
Image.fromarray(depth_16bit).save(path_out_16bit, mode="I;16")
|
82 |
+
depth_colored.save(path_out_vis)
|
83 |
+
|
84 |
+
return (
|
85 |
+
[path_out_16bit, path_out_vis],
|
86 |
+
[path_out_16bit, path_out_fp32, path_out_vis],
|
87 |
+
)
|
88 |
+
|
89 |
+
|
90 |
+
def process_video(
|
91 |
+
pipe,
|
92 |
+
path_input,
|
93 |
+
depth_latent_init_strength=default_video_depth_latent_init_strength,
|
94 |
+
denoise_steps=default_video_denoise_steps,
|
95 |
+
ensemble_size=default_video_ensemble_size,
|
96 |
+
processing_res=default_video_processing_res,
|
97 |
+
out_fps=default_video_out_fps,
|
98 |
+
out_max_frames=default_video_out_max_frames,
|
99 |
+
progress=gr.Progress(),
|
100 |
+
):
|
101 |
+
path_output_dir = os.path.splitext(path_input)[0] + "_output"
|
102 |
+
os.makedirs(path_output_dir, exist_ok=True)
|
103 |
+
|
104 |
+
name_base = os.path.splitext(os.path.basename(path_input))[0]
|
105 |
+
path_out_vis = os.path.join(path_output_dir, f"{name_base}_depth_colored.mp4")
|
106 |
+
path_out_16bit = os.path.join(path_output_dir, f"{name_base}_depth_16bit.zip")
|
107 |
+
|
108 |
+
reader = imageio.get_reader(path_input)
|
109 |
+
|
110 |
+
meta_data = reader.get_meta_data()
|
111 |
+
fps = meta_data["fps"]
|
112 |
+
size = meta_data["size"]
|
113 |
+
duration_sec = meta_data["duration"]
|
114 |
+
|
115 |
+
if fps <= out_fps:
|
116 |
+
frame_interval, out_fps = 1, fps
|
117 |
+
else:
|
118 |
+
frame_interval = round(fps / out_fps)
|
119 |
+
out_fps = fps / frame_interval
|
120 |
+
|
121 |
+
out_duration_sec = out_max_frames / out_fps
|
122 |
+
if duration_sec > out_duration_sec:
|
123 |
+
gr.Warning(
|
124 |
+
f"Only the first ~{int(out_duration_sec)} seconds will be processed; "
|
125 |
+
f"use alternative setups for full processing"
|
126 |
+
)
|
127 |
+
|
128 |
+
writer = imageio.get_writer(path_out_vis, fps=out_fps)
|
129 |
+
zipf = zipfile.ZipFile(path_out_16bit, "w", zipfile.ZIP_DEFLATED)
|
130 |
+
prev_depth_latent = None
|
131 |
+
|
132 |
+
pbar = tqdm(desc="Processing Video", total=out_max_frames)
|
133 |
+
|
134 |
+
out_frame_id = 0
|
135 |
+
for frame_id, frame in enumerate(reader):
|
136 |
+
if not (frame_id % frame_interval == 0):
|
137 |
+
continue
|
138 |
+
out_frame_id += 1
|
139 |
+
pbar.update(1)
|
140 |
+
if out_frame_id > out_max_frames:
|
141 |
+
break
|
142 |
+
|
143 |
+
frame_pil = Image.fromarray(frame)
|
144 |
+
|
145 |
+
pipe_out = pipe(
|
146 |
+
frame_pil,
|
147 |
+
denoising_steps=denoise_steps,
|
148 |
+
ensemble_size=ensemble_size,
|
149 |
+
processing_res=processing_res,
|
150 |
+
match_input_res=False,
|
151 |
+
batch_size=0,
|
152 |
+
depth_latent_init=prev_depth_latent,
|
153 |
+
depth_latent_init_strength=depth_latent_init_strength,
|
154 |
+
seed=default_seed,
|
155 |
+
show_progress_bar=False,
|
156 |
+
)
|
157 |
+
|
158 |
+
prev_depth_latent = pipe_out.depth_latent
|
159 |
+
|
160 |
+
processed_frame = pipe_out.depth_colored
|
161 |
+
processed_frame = imageio.core.util.Array(np.array(processed_frame))
|
162 |
+
writer.append_data(processed_frame)
|
163 |
+
|
164 |
+
processed_frame = (65535 * np.clip(pipe_out.depth_np, 0.0, 1.0)).astype(
|
165 |
+
np.uint16
|
166 |
+
)
|
167 |
+
processed_frame = Image.fromarray(processed_frame, mode="I;16")
|
168 |
+
|
169 |
+
archive_path = os.path.join(
|
170 |
+
f"{name_base}_depth_16bit", f"{out_frame_id:05d}.png"
|
171 |
+
)
|
172 |
+
img_byte_arr = BytesIO()
|
173 |
+
processed_frame.save(img_byte_arr, format="png")
|
174 |
+
img_byte_arr.seek(0)
|
175 |
+
zipf.writestr(archive_path, img_byte_arr.read())
|
176 |
+
|
177 |
+
reader.close()
|
178 |
+
writer.close()
|
179 |
+
zipf.close()
|
180 |
+
|
181 |
+
return (
|
182 |
+
path_out_vis,
|
183 |
+
[path_out_vis, path_out_16bit],
|
184 |
+
)
|
185 |
+
|
186 |
+
|
187 |
+
def process_bas(
|
188 |
+
pipe,
|
189 |
+
path_input,
|
190 |
+
plane_near=default_bas_plane_near,
|
191 |
+
plane_far=default_bas_plane_far,
|
192 |
+
embossing=default_bas_embossing,
|
193 |
+
denoise_steps=default_bas_denoise_steps,
|
194 |
+
ensemble_size=default_bas_ensemble_size,
|
195 |
+
processing_res=default_bas_processing_res,
|
196 |
+
size_longest_px=default_bas_size_longest_px,
|
197 |
+
size_longest_cm=default_bas_size_longest_cm,
|
198 |
+
filter_size=default_bas_filter_size,
|
199 |
+
frame_thickness=default_bas_frame_thickness,
|
200 |
+
frame_near=default_bas_frame_near,
|
201 |
+
frame_far=default_bas_frame_far,
|
202 |
+
):
|
203 |
+
if plane_near >= plane_far:
|
204 |
+
raise gr.Error("NEAR plane must have a value smaller than the FAR plane")
|
205 |
+
|
206 |
+
path_output_dir = os.path.splitext(path_input)[0] + "_output"
|
207 |
+
os.makedirs(path_output_dir, exist_ok=True)
|
208 |
+
|
209 |
+
name_base, name_ext = os.path.splitext(os.path.basename(path_input))
|
210 |
+
|
211 |
+
input_image = Image.open(path_input)
|
212 |
+
|
213 |
+
pipe_out = pipe(
|
214 |
+
input_image,
|
215 |
+
denoising_steps=denoise_steps,
|
216 |
+
ensemble_size=ensemble_size,
|
217 |
+
processing_res=processing_res,
|
218 |
+
seed=default_seed,
|
219 |
+
show_progress_bar=False,
|
220 |
+
)
|
221 |
+
|
222 |
+
depth_pred = pipe_out.depth_np * 65535
|
223 |
+
|
224 |
+
def _process_3d(
|
225 |
+
size_longest_px,
|
226 |
+
filter_size,
|
227 |
+
vertex_colors,
|
228 |
+
scene_lights,
|
229 |
+
output_model_scale=None,
|
230 |
+
prepare_for_3d_printing=False,
|
231 |
+
):
|
232 |
+
image_rgb_w, image_rgb_h = input_image.width, input_image.height
|
233 |
+
image_rgb_d = max(image_rgb_w, image_rgb_h)
|
234 |
+
image_new_w = size_longest_px * image_rgb_w // image_rgb_d
|
235 |
+
image_new_h = size_longest_px * image_rgb_h // image_rgb_d
|
236 |
+
|
237 |
+
image_rgb_new = os.path.join(
|
238 |
+
path_output_dir, f"{name_base}_rgb_{size_longest_px}{name_ext}"
|
239 |
+
)
|
240 |
+
image_depth_new = os.path.join(
|
241 |
+
path_output_dir, f"{name_base}_depth_{size_longest_px}.png"
|
242 |
+
)
|
243 |
+
input_image.resize((image_new_w, image_new_h), Image.LANCZOS).save(
|
244 |
+
image_rgb_new
|
245 |
+
)
|
246 |
+
Image.fromarray(depth_pred).convert(mode="F").resize(
|
247 |
+
(image_new_w, image_new_h), Image.BILINEAR
|
248 |
+
).convert("I").save(image_depth_new)
|
249 |
+
|
250 |
+
path_glb, path_stl = extrude_depth_3d(
|
251 |
+
image_rgb_new,
|
252 |
+
image_depth_new,
|
253 |
+
output_model_scale=size_longest_cm * 10
|
254 |
+
if output_model_scale is None
|
255 |
+
else output_model_scale,
|
256 |
+
filter_size=filter_size,
|
257 |
+
coef_near=plane_near,
|
258 |
+
coef_far=plane_far,
|
259 |
+
emboss=embossing / 100,
|
260 |
+
f_thic=frame_thickness / 100,
|
261 |
+
f_near=frame_near / 100,
|
262 |
+
f_back=frame_far / 100,
|
263 |
+
vertex_colors=vertex_colors,
|
264 |
+
scene_lights=scene_lights,
|
265 |
+
prepare_for_3d_printing=prepare_for_3d_printing,
|
266 |
+
)
|
267 |
+
|
268 |
+
return path_glb, path_stl
|
269 |
+
|
270 |
+
path_viewer_glb, _ = _process_3d(
|
271 |
+
256, filter_size, vertex_colors=False, scene_lights=True, output_model_scale=1
|
272 |
+
)
|
273 |
+
path_files_glb, path_files_stl = _process_3d(
|
274 |
+
size_longest_px, filter_size, vertex_colors=True, scene_lights=False, prepare_for_3d_printing=True
|
275 |
+
)
|
276 |
+
|
277 |
+
return path_viewer_glb, [path_files_glb, path_files_stl]
|
278 |
+
|
279 |
+
|
280 |
+
def run_demo_server(pipe):
|
281 |
+
process_pipe_image = functools.partial(process_image, pipe)
|
282 |
+
process_pipe_video = functools.partial(process_video, pipe)
|
283 |
+
process_pipe_bas = functools.partial(process_bas, pipe)
|
284 |
+
os.environ["GRADIO_ALLOW_FLAGGING"] = "never"
|
285 |
+
|
286 |
+
gradio_theme = gr.themes.Default()
|
287 |
+
# gradio_theme.set(
|
288 |
+
# section_header_text_size="20px",
|
289 |
+
# section_header_text_weight="bold",
|
290 |
+
# )
|
291 |
+
|
292 |
+
with gr.Blocks(
|
293 |
+
theme=gradio_theme,
|
294 |
+
title="Marigold-LCM Depth Estimation",
|
295 |
+
css="""
|
296 |
+
#download {
|
297 |
+
height: 118px;
|
298 |
+
}
|
299 |
+
.slider .inner {
|
300 |
+
width: 5px;
|
301 |
+
background: #FFF;
|
302 |
+
}
|
303 |
+
.viewport {
|
304 |
+
aspect-ratio: 4/3;
|
305 |
+
}
|
306 |
+
.tabs button.selected {
|
307 |
+
font-size: 20px !important;
|
308 |
+
color: crimson !important;
|
309 |
+
}
|
310 |
+
""",
|
311 |
+
head="""
|
312 |
+
<script async src="https://www.googletagmanager.com/gtag/js?id=G-1FWSVCGZTG"></script>
|
313 |
+
<script>
|
314 |
+
window.dataLayer = window.dataLayer || [];
|
315 |
+
function gtag() {dataLayer.push(arguments);}
|
316 |
+
gtag('js', new Date());
|
317 |
+
gtag('config', 'G-1FWSVCGZTG');
|
318 |
+
</script>
|
319 |
+
""",
|
320 |
+
) as demo:
|
321 |
+
gr.Markdown(
|
322 |
+
"""
|
323 |
+
<h1 align="center">Marigold-LCM Depth Estimation</h1>
|
324 |
+
<p align="center">
|
325 |
+
<a title="Website" href="https://marigoldmonodepth.github.io/" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
|
326 |
+
<img src="https://www.obukhov.ai/img/badges/badge-website.svg">
|
327 |
+
</a>
|
328 |
+
<a title="arXiv" href="https://arxiv.org/abs/2312.02145" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
|
329 |
+
<img src="https://www.obukhov.ai/img/badges/badge-pdf.svg">
|
330 |
+
</a>
|
331 |
+
<a title="Github" href="https://github.com/prs-eth/marigold" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
|
332 |
+
<img src="https://img.shields.io/github/stars/prs-eth/marigold?label=GitHub%20%E2%98%85&logo=github&color=C8C" alt="badge-github-stars">
|
333 |
+
</a>
|
334 |
+
<a title="Social" href="https://twitter.com/antonobukhov1" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
|
335 |
+
<img src="https://www.obukhov.ai/img/badges/badge-social.svg" alt="social">
|
336 |
+
</a>
|
337 |
+
</p>
|
338 |
+
<p align="justify">
|
339 |
+
Marigold-LCM is the fast version of Marigold, the state-of-the-art depth estimator for images in the wild.
|
340 |
+
It combines the power of the original Marigold 10-step estimator and the Latent Consistency Models, delivering high-quality results in as little as <b>one step</b>.
|
341 |
+
We provide three functions in this demo: Image, Video, and Bas-relief 3D processing — <b>see the tabs below</b>.
|
342 |
+
Upload your content into the <b>left</b> side, or click any of the <b>examples</b> below.
|
343 |
+
Wait a second (for images and 3D) or a minute (for videos), and interact with the result in the <b>right</b> side.
|
344 |
+
To avoid queuing, fork the demo into your profile.
|
345 |
+
</p>
|
346 |
+
"""
|
347 |
+
)
|
348 |
+
|
349 |
+
with gr.Tabs(elem_classes=["tabs"]):
|
350 |
+
with gr.Tab("Image"):
|
351 |
+
with gr.Row():
|
352 |
+
with gr.Column():
|
353 |
+
image_input = gr.Image(
|
354 |
+
label="Input Image",
|
355 |
+
type="filepath",
|
356 |
+
)
|
357 |
+
with gr.Row():
|
358 |
+
image_submit_btn = gr.Button(
|
359 |
+
value="Compute Depth", variant="primary"
|
360 |
+
)
|
361 |
+
image_reset_btn = gr.Button(value="Reset")
|
362 |
+
with gr.Accordion("Advanced options", open=False):
|
363 |
+
image_denoise_steps = gr.Slider(
|
364 |
+
label="Number of denoising steps",
|
365 |
+
minimum=1,
|
366 |
+
maximum=4,
|
367 |
+
step=1,
|
368 |
+
value=default_image_denoise_steps,
|
369 |
+
)
|
370 |
+
image_ensemble_size = gr.Slider(
|
371 |
+
label="Ensemble size",
|
372 |
+
minimum=1,
|
373 |
+
maximum=10,
|
374 |
+
step=1,
|
375 |
+
value=default_image_ensemble_size,
|
376 |
+
)
|
377 |
+
image_processing_res = gr.Radio(
|
378 |
+
[
|
379 |
+
("Native", 0),
|
380 |
+
("Recommended", 768),
|
381 |
+
],
|
382 |
+
label="Processing resolution",
|
383 |
+
value=default_image_processing_res,
|
384 |
+
)
|
385 |
+
with gr.Column():
|
386 |
+
image_output_slider = ImageSlider(
|
387 |
+
label="Predicted depth (red-near, blue-far)",
|
388 |
+
type="filepath",
|
389 |
+
show_download_button=True,
|
390 |
+
show_share_button=True,
|
391 |
+
interactive=False,
|
392 |
+
elem_classes="slider",
|
393 |
+
position=0.25,
|
394 |
+
)
|
395 |
+
image_output_files = gr.Files(
|
396 |
+
label="Depth outputs",
|
397 |
+
elem_id="download",
|
398 |
+
interactive=False,
|
399 |
+
)
|
400 |
+
gr.Examples(
|
401 |
+
fn=process_pipe_image,
|
402 |
+
examples=[
|
403 |
+
os.path.join("files", "image", name)
|
404 |
+
for name in [
|
405 |
+
"arc.jpeg",
|
406 |
+
"berries.jpeg",
|
407 |
+
"butterfly.jpeg",
|
408 |
+
"cat.jpg",
|
409 |
+
"concert.jpeg",
|
410 |
+
"dog.jpeg",
|
411 |
+
"doughnuts.jpeg",
|
412 |
+
"einstein.jpg",
|
413 |
+
"food.jpeg",
|
414 |
+
"glasses.jpeg",
|
415 |
+
"house.jpg",
|
416 |
+
"lake.jpeg",
|
417 |
+
"marigold.jpeg",
|
418 |
+
"portrait_1.jpeg",
|
419 |
+
"portrait_2.jpeg",
|
420 |
+
"pumpkins.jpg",
|
421 |
+
"puzzle.jpeg",
|
422 |
+
"road.jpg",
|
423 |
+
"scientists.jpg",
|
424 |
+
"surfboards.jpeg",
|
425 |
+
"surfer.jpeg",
|
426 |
+
"swings.jpg",
|
427 |
+
"switzerland.jpeg",
|
428 |
+
"teamwork.jpeg",
|
429 |
+
"wave.jpeg",
|
430 |
+
]
|
431 |
+
],
|
432 |
+
inputs=[image_input],
|
433 |
+
outputs=[image_output_slider, image_output_files],
|
434 |
+
cache_examples=True,
|
435 |
+
)
|
436 |
+
|
437 |
+
with gr.Tab("Video"):
|
438 |
+
with gr.Row():
|
439 |
+
with gr.Column():
|
440 |
+
video_input = gr.Video(
|
441 |
+
label="Input Video",
|
442 |
+
sources=["upload"],
|
443 |
+
)
|
444 |
+
with gr.Row():
|
445 |
+
video_submit_btn = gr.Button(
|
446 |
+
value="Compute Depth", variant="primary"
|
447 |
+
)
|
448 |
+
video_reset_btn = gr.Button(value="Reset")
|
449 |
+
with gr.Column():
|
450 |
+
video_output_video = gr.Video(
|
451 |
+
label="Output video depth (red-near, blue-far)",
|
452 |
+
interactive=False,
|
453 |
+
)
|
454 |
+
video_output_files = gr.Files(
|
455 |
+
label="Depth outputs",
|
456 |
+
elem_id="download",
|
457 |
+
interactive=False,
|
458 |
+
)
|
459 |
+
gr.Examples(
|
460 |
+
fn=process_pipe_video,
|
461 |
+
examples=[
|
462 |
+
os.path.join("files", "video", name)
|
463 |
+
for name in [
|
464 |
+
"cab.mp4",
|
465 |
+
"elephant.mp4",
|
466 |
+
"obama.mp4",
|
467 |
+
]
|
468 |
+
],
|
469 |
+
inputs=[video_input],
|
470 |
+
outputs=[video_output_video, video_output_files],
|
471 |
+
cache_examples=True,
|
472 |
+
)
|
473 |
+
|
474 |
+
with gr.Tab("Bas-relief (3D)"):
|
475 |
+
gr.Markdown(
|
476 |
+
"""
|
477 |
+
<p align="justify">
|
478 |
+
This part of the demo uses Marigold-LCM to create a bas-relief model.
|
479 |
+
The models are watertight, with correct normals, and exported in the STL format, which makes them <b>3D-printable</b>.
|
480 |
+
Start by uploading the image and click "Create" with the default parameters.
|
481 |
+
To improve the result, click "Clear", adjust the geometry sliders below, and click "Create" again.
|
482 |
+
</p>
|
483 |
+
""",
|
484 |
+
)
|
485 |
+
with gr.Row():
|
486 |
+
with gr.Column():
|
487 |
+
bas_input = gr.Image(
|
488 |
+
label="Input Image",
|
489 |
+
type="filepath",
|
490 |
+
)
|
491 |
+
with gr.Row():
|
492 |
+
bas_submit_btn = gr.Button(value="Create 3D", variant="primary")
|
493 |
+
bas_clear_btn = gr.Button(value="Clear")
|
494 |
+
bas_reset_btn = gr.Button(value="Reset")
|
495 |
+
with gr.Accordion("3D printing demo: Main options", open=True):
|
496 |
+
bas_plane_near = gr.Slider(
|
497 |
+
label="Relative position of the near plane (between 0 and 1)",
|
498 |
+
minimum=0.0,
|
499 |
+
maximum=1.0,
|
500 |
+
step=0.001,
|
501 |
+
value=default_bas_plane_near,
|
502 |
+
)
|
503 |
+
bas_plane_far = gr.Slider(
|
504 |
+
label="Relative position of the far plane (between near and 1)",
|
505 |
+
minimum=0.0,
|
506 |
+
maximum=1.0,
|
507 |
+
step=0.001,
|
508 |
+
value=default_bas_plane_far,
|
509 |
+
)
|
510 |
+
bas_embossing = gr.Slider(
|
511 |
+
label="Embossing level",
|
512 |
+
minimum=0,
|
513 |
+
maximum=100,
|
514 |
+
step=1,
|
515 |
+
value=default_bas_embossing,
|
516 |
+
)
|
517 |
+
with gr.Accordion("3D printing demo: Advanced options", open=False):
|
518 |
+
bas_denoise_steps = gr.Slider(
|
519 |
+
label="Number of denoising steps",
|
520 |
+
minimum=1,
|
521 |
+
maximum=4,
|
522 |
+
step=1,
|
523 |
+
value=default_bas_denoise_steps,
|
524 |
+
)
|
525 |
+
bas_ensemble_size = gr.Slider(
|
526 |
+
label="Ensemble size",
|
527 |
+
minimum=1,
|
528 |
+
maximum=10,
|
529 |
+
step=1,
|
530 |
+
value=default_bas_ensemble_size,
|
531 |
+
)
|
532 |
+
bas_processing_res = gr.Radio(
|
533 |
+
[
|
534 |
+
("Native", 0),
|
535 |
+
("Recommended", 768),
|
536 |
+
],
|
537 |
+
label="Processing resolution",
|
538 |
+
value=default_bas_processing_res,
|
539 |
+
)
|
540 |
+
bas_size_longest_px = gr.Slider(
|
541 |
+
label="Size (px) of the longest side",
|
542 |
+
minimum=256,
|
543 |
+
maximum=1024,
|
544 |
+
step=256,
|
545 |
+
value=default_bas_size_longest_px,
|
546 |
+
)
|
547 |
+
bas_size_longest_cm = gr.Slider(
|
548 |
+
label="Size (cm) of the longest side",
|
549 |
+
minimum=1,
|
550 |
+
maximum=100,
|
551 |
+
step=1,
|
552 |
+
value=default_bas_size_longest_cm,
|
553 |
+
)
|
554 |
+
bas_filter_size = gr.Slider(
|
555 |
+
label="Size (px) of the smoothing filter",
|
556 |
+
minimum=1,
|
557 |
+
maximum=5,
|
558 |
+
step=2,
|
559 |
+
value=default_bas_filter_size,
|
560 |
+
)
|
561 |
+
bas_frame_thickness = gr.Slider(
|
562 |
+
label="Frame thickness",
|
563 |
+
minimum=0,
|
564 |
+
maximum=100,
|
565 |
+
step=1,
|
566 |
+
value=default_bas_frame_thickness,
|
567 |
+
)
|
568 |
+
bas_frame_near = gr.Slider(
|
569 |
+
label="Frame's near plane offset",
|
570 |
+
minimum=-100,
|
571 |
+
maximum=100,
|
572 |
+
step=1,
|
573 |
+
value=default_bas_frame_near,
|
574 |
+
)
|
575 |
+
bas_frame_far = gr.Slider(
|
576 |
+
label="Frame's far plane offset",
|
577 |
+
minimum=1,
|
578 |
+
maximum=10,
|
579 |
+
step=1,
|
580 |
+
value=default_bas_frame_far,
|
581 |
+
)
|
582 |
+
with gr.Column():
|
583 |
+
bas_output_viewer = gr.Model3D(
|
584 |
+
camera_position=(75.0, 90.0, 1.25),
|
585 |
+
elem_classes="viewport",
|
586 |
+
label="3D preview (low-res, relief highlight)",
|
587 |
+
interactive=False,
|
588 |
+
)
|
589 |
+
bas_output_files = gr.Files(
|
590 |
+
label="3D model outputs (high-res)",
|
591 |
+
elem_id="download",
|
592 |
+
interactive=False,
|
593 |
+
)
|
594 |
+
gr.Examples(
|
595 |
+
fn=process_pipe_bas,
|
596 |
+
examples=[
|
597 |
+
[
|
598 |
+
"files/basrelief/coin.jpg", # input
|
599 |
+
0.0, # plane_near
|
600 |
+
0.66, # plane_far
|
601 |
+
15, # embossing
|
602 |
+
4, # denoise_steps
|
603 |
+
4, # ensemble_size
|
604 |
+
768, # processing_res
|
605 |
+
512, # size_longest_px
|
606 |
+
10, # size_longest_cm
|
607 |
+
3, # filter_size
|
608 |
+
5, # frame_thickness
|
609 |
+
0, # frame_near
|
610 |
+
1, # frame_far
|
611 |
+
],
|
612 |
+
[
|
613 |
+
"files/basrelief/einstein.jpg", # input
|
614 |
+
0.0, # plane_near
|
615 |
+
0.5, # plane_far
|
616 |
+
50, # embossing
|
617 |
+
2, # denoise_steps
|
618 |
+
1, # ensemble_size
|
619 |
+
768, # processing_res
|
620 |
+
512, # size_longest_px
|
621 |
+
10, # size_longest_cm
|
622 |
+
3, # filter_size
|
623 |
+
5, # frame_thickness
|
624 |
+
-15, # frame_near
|
625 |
+
1, # frame_far
|
626 |
+
],
|
627 |
+
[
|
628 |
+
"files/basrelief/food.jpeg", # input
|
629 |
+
0.0, # plane_near
|
630 |
+
1.0, # plane_far
|
631 |
+
20, # embossing
|
632 |
+
2, # denoise_steps
|
633 |
+
4, # ensemble_size
|
634 |
+
768, # processing_res
|
635 |
+
512, # size_longest_px
|
636 |
+
10, # size_longest_cm
|
637 |
+
3, # filter_size
|
638 |
+
5, # frame_thickness
|
639 |
+
-5, # frame_near
|
640 |
+
1, # frame_far
|
641 |
+
],
|
642 |
+
],
|
643 |
+
inputs=[
|
644 |
+
bas_input,
|
645 |
+
bas_plane_near,
|
646 |
+
bas_plane_far,
|
647 |
+
bas_embossing,
|
648 |
+
bas_denoise_steps,
|
649 |
+
bas_ensemble_size,
|
650 |
+
bas_processing_res,
|
651 |
+
bas_size_longest_px,
|
652 |
+
bas_size_longest_cm,
|
653 |
+
bas_filter_size,
|
654 |
+
bas_frame_thickness,
|
655 |
+
bas_frame_near,
|
656 |
+
bas_frame_far,
|
657 |
+
],
|
658 |
+
outputs=[bas_output_viewer, bas_output_files],
|
659 |
+
cache_examples=True,
|
660 |
+
)
|
661 |
+
|
662 |
+
image_submit_btn.click(
|
663 |
+
fn=process_pipe_image,
|
664 |
+
inputs=[
|
665 |
+
image_input,
|
666 |
+
image_denoise_steps,
|
667 |
+
image_ensemble_size,
|
668 |
+
image_processing_res,
|
669 |
+
],
|
670 |
+
outputs=[image_output_slider, image_output_files],
|
671 |
+
concurrency_limit=1,
|
672 |
+
)
|
673 |
+
|
674 |
+
image_reset_btn.click(
|
675 |
+
fn=lambda: (
|
676 |
+
None,
|
677 |
+
None,
|
678 |
+
None,
|
679 |
+
default_image_ensemble_size,
|
680 |
+
default_image_denoise_steps,
|
681 |
+
default_image_processing_res,
|
682 |
+
),
|
683 |
+
inputs=[],
|
684 |
+
outputs=[
|
685 |
+
image_input,
|
686 |
+
image_output_slider,
|
687 |
+
image_output_files,
|
688 |
+
image_ensemble_size,
|
689 |
+
image_denoise_steps,
|
690 |
+
image_processing_res,
|
691 |
+
],
|
692 |
+
concurrency_limit=1,
|
693 |
+
)
|
694 |
+
|
695 |
+
video_submit_btn.click(
|
696 |
+
fn=process_pipe_video,
|
697 |
+
inputs=[video_input],
|
698 |
+
outputs=[video_output_video, video_output_files],
|
699 |
+
concurrency_limit=1,
|
700 |
+
)
|
701 |
+
|
702 |
+
video_reset_btn.click(
|
703 |
+
fn=lambda: (None, None, None),
|
704 |
+
inputs=[],
|
705 |
+
outputs=[video_input, video_output_video, video_output_files],
|
706 |
+
concurrency_limit=1,
|
707 |
+
)
|
708 |
+
|
709 |
+
def wrapper_process_pipe_bas(*args, **kwargs):
|
710 |
+
out = list(process_pipe_bas(*args, **kwargs))
|
711 |
+
out = [gr.Button(interactive=False), gr.Image(interactive=False)] + out
|
712 |
+
return out
|
713 |
+
|
714 |
+
bas_submit_btn.click(
|
715 |
+
fn=wrapper_process_pipe_bas,
|
716 |
+
inputs=[
|
717 |
+
bas_input,
|
718 |
+
bas_plane_near,
|
719 |
+
bas_plane_far,
|
720 |
+
bas_embossing,
|
721 |
+
bas_denoise_steps,
|
722 |
+
bas_ensemble_size,
|
723 |
+
bas_processing_res,
|
724 |
+
bas_size_longest_px,
|
725 |
+
bas_size_longest_cm,
|
726 |
+
bas_filter_size,
|
727 |
+
bas_frame_thickness,
|
728 |
+
bas_frame_near,
|
729 |
+
bas_frame_far,
|
730 |
+
],
|
731 |
+
outputs=[bas_submit_btn, bas_input, bas_output_viewer, bas_output_files],
|
732 |
+
concurrency_limit=1,
|
733 |
+
)
|
734 |
+
|
735 |
+
bas_clear_btn.click(
|
736 |
+
fn=lambda: (gr.Button(interactive=True), None, None),
|
737 |
+
inputs=[],
|
738 |
+
outputs=[
|
739 |
+
bas_submit_btn,
|
740 |
+
bas_output_viewer,
|
741 |
+
bas_output_files,
|
742 |
+
],
|
743 |
+
concurrency_limit=1,
|
744 |
+
)
|
745 |
+
|
746 |
+
bas_reset_btn.click(
|
747 |
+
fn=lambda: (
|
748 |
+
gr.Button(interactive=True),
|
749 |
+
None,
|
750 |
+
None,
|
751 |
+
None,
|
752 |
+
default_bas_plane_near,
|
753 |
+
default_bas_plane_far,
|
754 |
+
default_bas_embossing,
|
755 |
+
default_bas_denoise_steps,
|
756 |
+
default_bas_ensemble_size,
|
757 |
+
default_bas_processing_res,
|
758 |
+
default_bas_size_longest_px,
|
759 |
+
default_bas_size_longest_cm,
|
760 |
+
default_bas_filter_size,
|
761 |
+
default_bas_frame_thickness,
|
762 |
+
default_bas_frame_near,
|
763 |
+
default_bas_frame_far,
|
764 |
+
),
|
765 |
+
inputs=[],
|
766 |
+
outputs=[
|
767 |
+
bas_submit_btn,
|
768 |
+
bas_input,
|
769 |
+
bas_output_viewer,
|
770 |
+
bas_output_files,
|
771 |
+
bas_plane_near,
|
772 |
+
bas_plane_far,
|
773 |
+
bas_embossing,
|
774 |
+
bas_denoise_steps,
|
775 |
+
bas_ensemble_size,
|
776 |
+
bas_processing_res,
|
777 |
+
bas_size_longest_px,
|
778 |
+
bas_size_longest_cm,
|
779 |
+
bas_filter_size,
|
780 |
+
bas_frame_thickness,
|
781 |
+
bas_frame_near,
|
782 |
+
bas_frame_far,
|
783 |
+
],
|
784 |
+
concurrency_limit=1,
|
785 |
+
)
|
786 |
+
|
787 |
+
demo.queue(
|
788 |
+
api_open=False,
|
789 |
+
).launch(
|
790 |
+
server_name="0.0.0.0",
|
791 |
+
server_port=7860,
|
792 |
+
)
|
793 |
+
|
794 |
+
|
795 |
+
def prefetch_hf_cache(pipe):
|
796 |
+
process_image(pipe, "files/image/bee.jpg", 1, 1, 64)
|
797 |
+
shutil.rmtree("files/image/bee_output")
|
798 |
+
|
799 |
+
|
800 |
+
def main():
|
801 |
+
CHECKPOINT = "prs-eth/marigold-v1-0"
|
802 |
+
CHECKPOINT_UNET_LCM = "prs-eth/marigold-lcm-v1-0"
|
803 |
+
|
804 |
+
login(token=os.environ["HF_TOKEN_COLAB_RO"])
|
805 |
+
|
806 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
807 |
+
|
808 |
+
pipe = MarigoldDepthConsistencyPipeline.from_pretrained(
|
809 |
+
CHECKPOINT,
|
810 |
+
unet=UNet2DConditionModel.from_pretrained(
|
811 |
+
CHECKPOINT_UNET_LCM, subfolder="unet", use_auth_token=True
|
812 |
+
),
|
813 |
+
)
|
814 |
+
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
|
815 |
+
try:
|
816 |
+
import xformers
|
817 |
+
|
818 |
+
pipe.enable_xformers_memory_efficient_attention()
|
819 |
+
except:
|
820 |
+
pass # run without xformers
|
821 |
+
|
822 |
+
pipe = pipe.to(device)
|
823 |
+
prefetch_hf_cache(pipe)
|
824 |
+
run_demo_server(pipe)
|
825 |
+
|
826 |
+
|
827 |
+
if __name__ == "__main__":
|
828 |
+
main()
|
extrude.py
ADDED
@@ -0,0 +1,332 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import os
|
3 |
+
|
4 |
+
import numpy as np
|
5 |
+
import pygltflib
|
6 |
+
import trimesh
|
7 |
+
from PIL import Image, ImageFilter
|
8 |
+
|
9 |
+
|
10 |
+
def quaternion_multiply(q1, q2):
|
11 |
+
x1, y1, z1, w1 = q1
|
12 |
+
x2, y2, z2, w2 = q2
|
13 |
+
return [
|
14 |
+
w1 * x2 + x1 * w2 + y1 * z2 - z1 * y2,
|
15 |
+
w1 * y2 - x1 * z2 + y1 * w2 + z1 * x2,
|
16 |
+
w1 * z2 + x1 * y2 - y1 * x2 + z1 * w2,
|
17 |
+
w1 * w2 - x1 * x2 - y1 * y2 - z1 * z2,
|
18 |
+
]
|
19 |
+
|
20 |
+
|
21 |
+
def glb_add_lights(path_input, path_output):
|
22 |
+
"""
|
23 |
+
Adds directional lights in the horizontal plane to the glb file.
|
24 |
+
:param path_input: path to input glb
|
25 |
+
:param path_output: path to output glb
|
26 |
+
:return: None
|
27 |
+
"""
|
28 |
+
glb = pygltflib.GLTF2().load(path_input)
|
29 |
+
|
30 |
+
N = 3 # default max num lights in Babylon.js is 4
|
31 |
+
angle_step = 2 * math.pi / N
|
32 |
+
elevation_angle = math.radians(75)
|
33 |
+
|
34 |
+
light_colors = [
|
35 |
+
[1.0, 0.0, 0.0],
|
36 |
+
[0.0, 1.0, 0.0],
|
37 |
+
[0.0, 0.0, 1.0],
|
38 |
+
]
|
39 |
+
|
40 |
+
lights_extension = {
|
41 |
+
"lights": [
|
42 |
+
{"type": "directional", "color": light_colors[i], "intensity": 2.0}
|
43 |
+
for i in range(N)
|
44 |
+
]
|
45 |
+
}
|
46 |
+
|
47 |
+
if "KHR_lights_punctual" not in glb.extensionsUsed:
|
48 |
+
glb.extensionsUsed.append("KHR_lights_punctual")
|
49 |
+
glb.extensions["KHR_lights_punctual"] = lights_extension
|
50 |
+
|
51 |
+
light_nodes = []
|
52 |
+
for i in range(N):
|
53 |
+
angle = i * angle_step
|
54 |
+
|
55 |
+
pos_rot = [0.0, 0.0, math.sin(angle / 2), math.cos(angle / 2)]
|
56 |
+
elev_rot = [
|
57 |
+
math.sin(elevation_angle / 2),
|
58 |
+
0.0,
|
59 |
+
0.0,
|
60 |
+
math.cos(elevation_angle / 2),
|
61 |
+
]
|
62 |
+
rotation = quaternion_multiply(pos_rot, elev_rot)
|
63 |
+
|
64 |
+
node = {
|
65 |
+
"rotation": rotation,
|
66 |
+
"extensions": {"KHR_lights_punctual": {"light": i}},
|
67 |
+
}
|
68 |
+
light_nodes.append(node)
|
69 |
+
|
70 |
+
light_node_indices = list(range(len(glb.nodes), len(glb.nodes) + N))
|
71 |
+
glb.nodes.extend(light_nodes)
|
72 |
+
|
73 |
+
root_node_index = glb.scenes[glb.scene].nodes[0]
|
74 |
+
root_node = glb.nodes[root_node_index]
|
75 |
+
if hasattr(root_node, "children"):
|
76 |
+
root_node.children.extend(light_node_indices)
|
77 |
+
else:
|
78 |
+
root_node.children = light_node_indices
|
79 |
+
|
80 |
+
glb.save(path_output)
|
81 |
+
|
82 |
+
|
83 |
+
def extrude_depth_3d(
|
84 |
+
path_rgb,
|
85 |
+
path_depth,
|
86 |
+
output_model_scale=100,
|
87 |
+
filter_size=3,
|
88 |
+
coef_near=0.0,
|
89 |
+
coef_far=1.0,
|
90 |
+
emboss=0.3,
|
91 |
+
f_thic=0.05,
|
92 |
+
f_near=-0.15,
|
93 |
+
f_back=0.01,
|
94 |
+
vertex_colors=True,
|
95 |
+
scene_lights=True,
|
96 |
+
prepare_for_3d_printing=False,
|
97 |
+
):
|
98 |
+
f_far_inner = -emboss
|
99 |
+
f_far_outer = f_far_inner - f_back
|
100 |
+
|
101 |
+
f_near = max(f_near, f_far_inner)
|
102 |
+
|
103 |
+
depth_image = Image.open(path_depth)
|
104 |
+
assert depth_image.mode == "I", depth_image.mode
|
105 |
+
depth_image = depth_image.filter(ImageFilter.MedianFilter(size=filter_size))
|
106 |
+
|
107 |
+
w, h = depth_image.size
|
108 |
+
d_max = max(w, h)
|
109 |
+
depth_image = np.array(depth_image).astype(np.double)
|
110 |
+
z_min, z_max = np.min(depth_image), np.max(depth_image)
|
111 |
+
depth_image = (depth_image.astype(np.double) - z_min) / (z_max - z_min)
|
112 |
+
depth_image[depth_image < coef_near] = coef_near
|
113 |
+
depth_image[depth_image > coef_far] = coef_far
|
114 |
+
depth_image = emboss * (depth_image - coef_near) / (coef_far - coef_near)
|
115 |
+
rgb_image = np.array(
|
116 |
+
Image.open(path_rgb).convert("RGB").resize((w, h), Image.Resampling.LANCZOS)
|
117 |
+
)
|
118 |
+
|
119 |
+
w_norm = w / float(d_max - 1)
|
120 |
+
h_norm = h / float(d_max - 1)
|
121 |
+
w_half = w_norm / 2
|
122 |
+
h_half = h_norm / 2
|
123 |
+
|
124 |
+
x, y = np.meshgrid(np.arange(w), np.arange(h))
|
125 |
+
x = x / float(d_max - 1) - w_half # [-w_half, w_half]
|
126 |
+
y = -y / float(d_max - 1) + h_half # [-h_half, h_half]
|
127 |
+
z = -depth_image # -depth_emboss (far) - 0 (near)
|
128 |
+
vertices_2d = np.stack((x, y, z), axis=-1)
|
129 |
+
vertices = vertices_2d.reshape(-1, 3)
|
130 |
+
colors = rgb_image[:, :, :3].reshape(-1, 3) / 255.0
|
131 |
+
|
132 |
+
faces = []
|
133 |
+
for y in range(h - 1):
|
134 |
+
for x in range(w - 1):
|
135 |
+
idx = y * w + x
|
136 |
+
faces.append([idx, idx + w, idx + 1])
|
137 |
+
faces.append([idx + 1, idx + w, idx + 1 + w])
|
138 |
+
|
139 |
+
# OUTER frame
|
140 |
+
|
141 |
+
nv = len(vertices)
|
142 |
+
vertices = np.append(
|
143 |
+
vertices,
|
144 |
+
[
|
145 |
+
[-w_half - f_thic, -h_half - f_thic, f_near], # 00
|
146 |
+
[-w_half - f_thic, -h_half - f_thic, f_far_outer], # 01
|
147 |
+
[w_half + f_thic, -h_half - f_thic, f_near], # 02
|
148 |
+
[w_half + f_thic, -h_half - f_thic, f_far_outer], # 03
|
149 |
+
[w_half + f_thic, h_half + f_thic, f_near], # 04
|
150 |
+
[w_half + f_thic, h_half + f_thic, f_far_outer], # 05
|
151 |
+
[-w_half - f_thic, h_half + f_thic, f_near], # 06
|
152 |
+
[-w_half - f_thic, h_half + f_thic, f_far_outer], # 07
|
153 |
+
],
|
154 |
+
axis=0,
|
155 |
+
)
|
156 |
+
faces.extend(
|
157 |
+
[
|
158 |
+
[nv + 0, nv + 1, nv + 2],
|
159 |
+
[nv + 2, nv + 1, nv + 3],
|
160 |
+
[nv + 2, nv + 3, nv + 4],
|
161 |
+
[nv + 4, nv + 3, nv + 5],
|
162 |
+
[nv + 4, nv + 5, nv + 6],
|
163 |
+
[nv + 6, nv + 5, nv + 7],
|
164 |
+
[nv + 6, nv + 7, nv + 0],
|
165 |
+
[nv + 0, nv + 7, nv + 1],
|
166 |
+
]
|
167 |
+
)
|
168 |
+
colors = np.append(colors, [[0.5, 0.5, 0.5]] * 8, axis=0)
|
169 |
+
|
170 |
+
# INNER frame
|
171 |
+
|
172 |
+
nv = len(vertices)
|
173 |
+
vertices_left_data = vertices_2d[:, 0] # H x 3
|
174 |
+
vertices_left_frame = vertices_2d[:, 0].copy() # H x 3
|
175 |
+
vertices_left_frame[:, 2] = f_near
|
176 |
+
vertices = np.append(vertices, vertices_left_data, axis=0)
|
177 |
+
vertices = np.append(vertices, vertices_left_frame, axis=0)
|
178 |
+
colors = np.append(colors, [[0.5, 0.5, 0.5]] * (2 * h), axis=0)
|
179 |
+
for i in range(h - 1):
|
180 |
+
nvi_d = nv + i
|
181 |
+
nvi_f = nvi_d + h
|
182 |
+
faces.append([nvi_d, nvi_f, nvi_d + 1])
|
183 |
+
faces.append([nvi_d + 1, nvi_f, nvi_f + 1])
|
184 |
+
|
185 |
+
nv = len(vertices)
|
186 |
+
vertices_right_data = vertices_2d[:, -1] # H x 3
|
187 |
+
vertices_right_frame = vertices_2d[:, -1].copy() # H x 3
|
188 |
+
vertices_right_frame[:, 2] = f_near
|
189 |
+
vertices = np.append(vertices, vertices_right_data, axis=0)
|
190 |
+
vertices = np.append(vertices, vertices_right_frame, axis=0)
|
191 |
+
colors = np.append(colors, [[0.5, 0.5, 0.5]] * (2 * h), axis=0)
|
192 |
+
for i in range(h - 1):
|
193 |
+
nvi_d = nv + i
|
194 |
+
nvi_f = nvi_d + h
|
195 |
+
faces.append([nvi_d, nvi_d + 1, nvi_f])
|
196 |
+
faces.append([nvi_d + 1, nvi_f + 1, nvi_f])
|
197 |
+
|
198 |
+
nv = len(vertices)
|
199 |
+
vertices_top_data = vertices_2d[0, :] # H x 3
|
200 |
+
vertices_top_frame = vertices_2d[0, :].copy() # H x 3
|
201 |
+
vertices_top_frame[:, 2] = f_near
|
202 |
+
vertices = np.append(vertices, vertices_top_data, axis=0)
|
203 |
+
vertices = np.append(vertices, vertices_top_frame, axis=0)
|
204 |
+
colors = np.append(colors, [[0.5, 0.5, 0.5]] * (2 * w), axis=0)
|
205 |
+
for i in range(w - 1):
|
206 |
+
nvi_d = nv + i
|
207 |
+
nvi_f = nvi_d + w
|
208 |
+
faces.append([nvi_d, nvi_d + 1, nvi_f])
|
209 |
+
faces.append([nvi_d + 1, nvi_f + 1, nvi_f])
|
210 |
+
|
211 |
+
nv = len(vertices)
|
212 |
+
vertices_bottom_data = vertices_2d[-1, :] # H x 3
|
213 |
+
vertices_bottom_frame = vertices_2d[-1, :].copy() # H x 3
|
214 |
+
vertices_bottom_frame[:, 2] = f_near
|
215 |
+
vertices = np.append(vertices, vertices_bottom_data, axis=0)
|
216 |
+
vertices = np.append(vertices, vertices_bottom_frame, axis=0)
|
217 |
+
colors = np.append(colors, [[0.5, 0.5, 0.5]] * (2 * w), axis=0)
|
218 |
+
for i in range(w - 1):
|
219 |
+
nvi_d = nv + i
|
220 |
+
nvi_f = nvi_d + w
|
221 |
+
faces.append([nvi_d, nvi_f, nvi_d + 1])
|
222 |
+
faces.append([nvi_d + 1, nvi_f, nvi_f + 1])
|
223 |
+
|
224 |
+
# FRONT frame
|
225 |
+
|
226 |
+
nv = len(vertices)
|
227 |
+
vertices = np.append(
|
228 |
+
vertices,
|
229 |
+
[
|
230 |
+
[-w_half - f_thic, -h_half - f_thic, f_near],
|
231 |
+
[-w_half - f_thic, h_half + f_thic, f_near],
|
232 |
+
],
|
233 |
+
axis=0,
|
234 |
+
)
|
235 |
+
vertices = np.append(vertices, vertices_left_frame, axis=0)
|
236 |
+
colors = np.append(colors, [[0.5, 0.5, 0.5]] * (2 + h), axis=0)
|
237 |
+
for i in range(h - 1):
|
238 |
+
faces.append([nv, nv + 2 + i + 1, nv + 2 + i])
|
239 |
+
faces.append([nv, nv + 2, nv + 1])
|
240 |
+
|
241 |
+
nv = len(vertices)
|
242 |
+
vertices = np.append(
|
243 |
+
vertices,
|
244 |
+
[
|
245 |
+
[w_half + f_thic, h_half + f_thic, f_near],
|
246 |
+
[w_half + f_thic, -h_half - f_thic, f_near],
|
247 |
+
],
|
248 |
+
axis=0,
|
249 |
+
)
|
250 |
+
vertices = np.append(vertices, vertices_right_frame, axis=0)
|
251 |
+
colors = np.append(colors, [[0.5, 0.5, 0.5]] * (2 + h), axis=0)
|
252 |
+
for i in range(h - 1):
|
253 |
+
faces.append([nv, nv + 2 + i, nv + 2 + i + 1])
|
254 |
+
faces.append([nv, nv + h + 1, nv + 1])
|
255 |
+
|
256 |
+
nv = len(vertices)
|
257 |
+
vertices = np.append(
|
258 |
+
vertices,
|
259 |
+
[
|
260 |
+
[w_half + f_thic, h_half + f_thic, f_near],
|
261 |
+
[-w_half - f_thic, h_half + f_thic, f_near],
|
262 |
+
],
|
263 |
+
axis=0,
|
264 |
+
)
|
265 |
+
vertices = np.append(vertices, vertices_top_frame, axis=0)
|
266 |
+
colors = np.append(colors, [[0.5, 0.5, 0.5]] * (2 + w), axis=0)
|
267 |
+
for i in range(w - 1):
|
268 |
+
faces.append([nv, nv + 2 + i, nv + 2 + i + 1])
|
269 |
+
faces.append([nv, nv + 1, nv + 2])
|
270 |
+
|
271 |
+
nv = len(vertices)
|
272 |
+
vertices = np.append(
|
273 |
+
vertices,
|
274 |
+
[
|
275 |
+
[-w_half - f_thic, -h_half - f_thic, f_near],
|
276 |
+
[w_half + f_thic, -h_half - f_thic, f_near],
|
277 |
+
],
|
278 |
+
axis=0,
|
279 |
+
)
|
280 |
+
vertices = np.append(vertices, vertices_bottom_frame, axis=0)
|
281 |
+
colors = np.append(colors, [[0.5, 0.5, 0.5]] * (2 + w), axis=0)
|
282 |
+
for i in range(w - 1):
|
283 |
+
faces.append([nv, nv + 2 + i + 1, nv + 2 + i])
|
284 |
+
faces.append([nv, nv + 1, nv + w + 1])
|
285 |
+
|
286 |
+
# BACK frame
|
287 |
+
|
288 |
+
nv = len(vertices)
|
289 |
+
vertices = np.append(
|
290 |
+
vertices,
|
291 |
+
[
|
292 |
+
[-w_half - f_thic, -h_half - f_thic, f_far_outer], # 00
|
293 |
+
[w_half + f_thic, -h_half - f_thic, f_far_outer], # 01
|
294 |
+
[w_half + f_thic, h_half + f_thic, f_far_outer], # 02
|
295 |
+
[-w_half - f_thic, h_half + f_thic, f_far_outer], # 03
|
296 |
+
],
|
297 |
+
axis=0,
|
298 |
+
)
|
299 |
+
faces.extend(
|
300 |
+
[
|
301 |
+
[nv + 0, nv + 2, nv + 1],
|
302 |
+
[nv + 2, nv + 0, nv + 3],
|
303 |
+
]
|
304 |
+
)
|
305 |
+
colors = np.append(colors, [[0.5, 0.5, 0.5]] * 4, axis=0)
|
306 |
+
|
307 |
+
trimesh_kwargs = {}
|
308 |
+
if vertex_colors:
|
309 |
+
trimesh_kwargs["vertex_colors"] = colors
|
310 |
+
mesh = trimesh.Trimesh(vertices=vertices, faces=faces, **trimesh_kwargs)
|
311 |
+
|
312 |
+
mesh.merge_vertices()
|
313 |
+
|
314 |
+
current_max_dimension = max(mesh.extents)
|
315 |
+
scaling_factor = output_model_scale / current_max_dimension
|
316 |
+
mesh.apply_scale(scaling_factor)
|
317 |
+
|
318 |
+
if prepare_for_3d_printing:
|
319 |
+
rotation_mat = trimesh.transformations.rotation_matrix(np.radians(90), [-1, 0, 0])
|
320 |
+
mesh.apply_transform(rotation_mat)
|
321 |
+
|
322 |
+
path_out_base = os.path.splitext(path_depth)[0].replace("_16bit", "")
|
323 |
+
path_out_glb = path_out_base + ".glb"
|
324 |
+
path_out_stl = path_out_base + ".stl"
|
325 |
+
|
326 |
+
mesh.export(path_out_glb, file_type="glb")
|
327 |
+
if scene_lights:
|
328 |
+
glb_add_lights(path_out_glb, path_out_glb)
|
329 |
+
|
330 |
+
mesh.export(path_out_stl, file_type="stl")
|
331 |
+
|
332 |
+
return path_out_glb, path_out_stl
|
files/basrelief/coin.jpg
ADDED
Git LFS Details
|
files/basrelief/einstein.jpg
ADDED
Git LFS Details
|
files/basrelief/food.jpeg
ADDED
Git LFS Details
|
files/image/arc.jpeg
ADDED
Git LFS Details
|
files/image/bee.jpg
ADDED
Git LFS Details
|
files/image/berries.jpeg
ADDED
Git LFS Details
|
files/image/butterfly.jpeg
ADDED
Git LFS Details
|
files/image/cat.jpg
ADDED
Git LFS Details
|
files/image/concert.jpeg
ADDED
Git LFS Details
|
files/image/dog.jpeg
ADDED
Git LFS Details
|
files/image/doughnuts.jpeg
ADDED
Git LFS Details
|
files/image/einstein.jpg
ADDED
Git LFS Details
|
files/image/food.jpeg
ADDED
Git LFS Details
|
files/image/glasses.jpeg
ADDED
Git LFS Details
|
files/image/house.jpg
ADDED
Git LFS Details
|
files/image/lake.jpeg
ADDED
Git LFS Details
|
files/image/marigold.jpeg
ADDED
Git LFS Details
|
files/image/portrait_1.jpeg
ADDED
Git LFS Details
|
files/image/portrait_2.jpeg
ADDED
Git LFS Details
|
files/image/pumpkins.jpg
ADDED
Git LFS Details
|
files/image/puzzle.jpeg
ADDED
Git LFS Details
|
files/image/road.jpg
ADDED
Git LFS Details
|
files/image/scientists.jpg
ADDED
Git LFS Details
|
files/image/surfboards.jpeg
ADDED
Git LFS Details
|
files/image/surfer.jpeg
ADDED
Git LFS Details
|
files/image/swings.jpg
ADDED
Git LFS Details
|
files/image/switzerland.jpeg
ADDED
Git LFS Details
|
files/image/teamwork.jpeg
ADDED
Git LFS Details
|
files/image/wave.jpeg
ADDED
Git LFS Details
|
files/video/cab.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e7857328de30257e2985e0218e18e35f0dbc6ca9dd9f89b28687881f13ca0a4a
|
3 |
+
size 3268179
|
files/video/elephant.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7d198ec2e3e5a308c5eeb18c9f3a882f6c5812d329d9e8497e1bf79ff466dd84
|
3 |
+
size 3078416
|
files/video/obama.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4aa0ac19460e0966139247cc180f98398fb11a35e3ca5c90cb70f0c4704904de
|
3 |
+
size 955458
|
marigold_depth_estimation_lcm.py
ADDED
@@ -0,0 +1,702 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 Anton Obukhov, Bingxin Ke, ETH Zurich and The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
# --------------------------------------------------------------------------
|
15 |
+
# If you find this code useful, we kindly ask you to cite our paper in your work.
|
16 |
+
# Please find bibtex at: https://github.com/prs-eth/Marigold#-citation
|
17 |
+
# More information about the method can be found at https://marigoldmonodepth.github.io
|
18 |
+
# --------------------------------------------------------------------------
|
19 |
+
|
20 |
+
|
21 |
+
import math
|
22 |
+
from typing import Dict, Union, Tuple
|
23 |
+
|
24 |
+
import matplotlib
|
25 |
+
import numpy as np
|
26 |
+
import torch
|
27 |
+
from PIL import Image
|
28 |
+
from scipy.optimize import minimize
|
29 |
+
from torch.utils.data import DataLoader, TensorDataset
|
30 |
+
from tqdm.auto import tqdm
|
31 |
+
from transformers import CLIPTextModel, CLIPTokenizer
|
32 |
+
|
33 |
+
from diffusers import (
|
34 |
+
AutoencoderKL,
|
35 |
+
DDIMScheduler,
|
36 |
+
DiffusionPipeline,
|
37 |
+
UNet2DConditionModel,
|
38 |
+
)
|
39 |
+
from diffusers.utils import BaseOutput, check_min_version
|
40 |
+
|
41 |
+
|
42 |
+
# Will error if the minimal version of diffusers is not installed. Remove at your own risks.
|
43 |
+
check_min_version("0.27.0.dev0")
|
44 |
+
|
45 |
+
|
46 |
+
class MarigoldDepthConsistencyOutput(BaseOutput):
|
47 |
+
"""
|
48 |
+
Output class for Marigold monocular depth prediction pipeline.
|
49 |
+
|
50 |
+
Args:
|
51 |
+
depth_np (`np.ndarray`):
|
52 |
+
Predicted depth map, with depth values in the range of [0, 1].
|
53 |
+
depth_colored (`None` or `PIL.Image.Image`):
|
54 |
+
Colorized depth map, with the shape of [3, H, W] and values in [0, 1].
|
55 |
+
depth_latent (`torch.Tensor`):
|
56 |
+
Depth map's latent, with the shape of [4, h, w].
|
57 |
+
uncertainty (`None` or `np.ndarray`):
|
58 |
+
Uncalibrated uncertainty(MAD, median absolute deviation) coming from ensembling.
|
59 |
+
"""
|
60 |
+
|
61 |
+
depth_np: np.ndarray
|
62 |
+
depth_colored: Union[None, Image.Image]
|
63 |
+
depth_latent: torch.Tensor
|
64 |
+
uncertainty: Union[None, np.ndarray]
|
65 |
+
|
66 |
+
|
67 |
+
class MarigoldDepthConsistencyPipeline(DiffusionPipeline):
|
68 |
+
"""
|
69 |
+
Pipeline for monocular depth estimation using Marigold: https://marigoldmonodepth.github.io.
|
70 |
+
|
71 |
+
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
|
72 |
+
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
|
73 |
+
|
74 |
+
Args:
|
75 |
+
unet (`UNet2DConditionModel`):
|
76 |
+
Conditional U-Net to denoise the depth latent, conditioned on image latent.
|
77 |
+
vae (`AutoencoderKL`):
|
78 |
+
Variational Auto-Encoder (VAE) Model to encode and decode images and depth maps
|
79 |
+
to and from latent representations.
|
80 |
+
scheduler (`DDIMScheduler`):
|
81 |
+
A scheduler to be used in combination with `unet` to denoise the encoded image latents.
|
82 |
+
text_encoder (`CLIPTextModel`):
|
83 |
+
Text-encoder, for empty text embedding.
|
84 |
+
tokenizer (`CLIPTokenizer`):
|
85 |
+
CLIP tokenizer.
|
86 |
+
"""
|
87 |
+
|
88 |
+
rgb_latent_scale_factor = 0.18215
|
89 |
+
depth_latent_scale_factor = 0.18215
|
90 |
+
|
91 |
+
def __init__(
|
92 |
+
self,
|
93 |
+
unet: UNet2DConditionModel,
|
94 |
+
vae: AutoencoderKL,
|
95 |
+
scheduler: DDIMScheduler,
|
96 |
+
text_encoder: CLIPTextModel,
|
97 |
+
tokenizer: CLIPTokenizer,
|
98 |
+
):
|
99 |
+
super().__init__()
|
100 |
+
|
101 |
+
self.register_modules(
|
102 |
+
unet=unet,
|
103 |
+
vae=vae,
|
104 |
+
scheduler=scheduler,
|
105 |
+
text_encoder=text_encoder,
|
106 |
+
tokenizer=tokenizer,
|
107 |
+
)
|
108 |
+
|
109 |
+
self.empty_text_embed = None
|
110 |
+
|
111 |
+
@torch.no_grad()
|
112 |
+
def __call__(
|
113 |
+
self,
|
114 |
+
input_image: Image,
|
115 |
+
denoising_steps: int = 1,
|
116 |
+
ensemble_size: int = 1,
|
117 |
+
processing_res: int = 768,
|
118 |
+
match_input_res: bool = True,
|
119 |
+
batch_size: int = 0,
|
120 |
+
depth_latent_init: torch.Tensor = None,
|
121 |
+
depth_latent_init_strength: float = 0.1,
|
122 |
+
seed: int = None,
|
123 |
+
color_map: str = "Spectral",
|
124 |
+
show_progress_bar: bool = True,
|
125 |
+
ensemble_kwargs: Dict = None,
|
126 |
+
) -> MarigoldDepthConsistencyOutput:
|
127 |
+
"""
|
128 |
+
Function invoked when calling the pipeline.
|
129 |
+
|
130 |
+
Args:
|
131 |
+
input_image (`Image`):
|
132 |
+
Input RGB (or gray-scale) image.
|
133 |
+
processing_res (`int`, *optional*, defaults to `768`):
|
134 |
+
Maximum resolution of processing.
|
135 |
+
If set to 0: will not resize at all.
|
136 |
+
match_input_res (`bool`, *optional*, defaults to `True`):
|
137 |
+
Resize depth prediction to match input resolution.
|
138 |
+
Only valid if `limit_input_res` is not None.
|
139 |
+
denoising_steps (`int`, *optional*, defaults to `1`):
|
140 |
+
Number of diffusion denoising steps (consistency) during inference.
|
141 |
+
ensemble_size (`int`, *optional*, defaults to `1`):
|
142 |
+
Number of predictions to be ensembled.
|
143 |
+
batch_size (`int`, *optional*, defaults to `0`):
|
144 |
+
Inference batch size, no bigger than `num_ensemble`.
|
145 |
+
If set to 0, the script will automatically decide the proper batch size.
|
146 |
+
depth_latent_init (`torch.Tensor`, *optional*, defaults to `None`):
|
147 |
+
Initial depth map latent for better temporal consistency.
|
148 |
+
depth_latent_init_strength (`float`, *optional*, defaults to `0.1`)
|
149 |
+
Degree of initial depth latent influence, must be between 0 and 1.
|
150 |
+
seed (`int`, *optional*, defaults to `None`)
|
151 |
+
Reproducibility seed.
|
152 |
+
show_progress_bar (`bool`, *optional*, defaults to `True`):
|
153 |
+
Display a progress bar of diffusion denoising.
|
154 |
+
color_map (`str`, *optional*, defaults to `"Spectral"`, pass `None` to skip colorized depth map generation):
|
155 |
+
Colormap used to colorize the depth map.
|
156 |
+
ensemble_kwargs (`dict`, *optional*, defaults to `None`):
|
157 |
+
Arguments for detailed ensembling settings.
|
158 |
+
Returns:
|
159 |
+
`MarigoldDepthConsistencyOutput`: Output class for Marigold monocular depth prediction pipeline, including:
|
160 |
+
- **depth_np** (`np.ndarray`) Predicted depth map, with depth values in the range of [0, 1]
|
161 |
+
- **depth_colored** (`None` or `PIL.Image.Image`) Colorized depth map, with the shape of [3, H, W] and
|
162 |
+
values in [0, 1]. None if `color_map` is `None`
|
163 |
+
- **depth_latent** (`torch.Tensor`) Predicted depth map latent
|
164 |
+
- **uncertainty** (`None` or `np.ndarray`) Uncalibrated uncertainty(MAD, median absolute deviation)
|
165 |
+
coming from ensembling. None if `ensemble_size = 1`
|
166 |
+
"""
|
167 |
+
|
168 |
+
device = self.device
|
169 |
+
input_size = input_image.size
|
170 |
+
|
171 |
+
if not match_input_res:
|
172 |
+
assert (
|
173 |
+
processing_res is not None
|
174 |
+
), "Value error: `resize_output_back` is only valid with "
|
175 |
+
assert processing_res >= 0, "Value error: `processing_res` must be non-negative"
|
176 |
+
assert (
|
177 |
+
1 <= denoising_steps <= 10
|
178 |
+
), "Value error: This model degrades with large number of steps"
|
179 |
+
assert ensemble_size >= 1
|
180 |
+
|
181 |
+
# ----------------- Image Preprocess -----------------
|
182 |
+
# Resize image
|
183 |
+
if processing_res > 0:
|
184 |
+
input_image = self.resize_max_res(
|
185 |
+
input_image, max_edge_resolution=processing_res
|
186 |
+
)
|
187 |
+
# Convert the image to RGB, to 1.remove the alpha channel 2.convert B&W to 3-channel
|
188 |
+
input_image = input_image.convert("RGB")
|
189 |
+
image = np.asarray(input_image)
|
190 |
+
|
191 |
+
# Normalize rgb values
|
192 |
+
rgb = np.transpose(image, (2, 0, 1)) # [H, W, rgb] -> [rgb, H, W]
|
193 |
+
rgb_norm = rgb / 255.0 * 2.0 - 1.0 # [0, 255] -> [-1, 1]
|
194 |
+
rgb_norm = torch.from_numpy(rgb_norm).to(self.dtype)
|
195 |
+
rgb_norm = rgb_norm.to(device)
|
196 |
+
assert rgb_norm.min() >= -1.0 and rgb_norm.max() <= 1.0
|
197 |
+
|
198 |
+
# ----------------- Predicting depth -----------------
|
199 |
+
# Batch repeated input image
|
200 |
+
duplicated_rgb = torch.stack([rgb_norm] * ensemble_size)
|
201 |
+
batch_dataset = TensorDataset(duplicated_rgb)
|
202 |
+
if batch_size > 0:
|
203 |
+
_bs = batch_size
|
204 |
+
else:
|
205 |
+
_bs = self._find_batch_size(
|
206 |
+
ensemble_size=ensemble_size,
|
207 |
+
input_res=max(duplicated_rgb.shape[-2:]),
|
208 |
+
dtype=self.dtype,
|
209 |
+
)
|
210 |
+
|
211 |
+
batch_loader = DataLoader(batch_dataset, batch_size=_bs, shuffle=False)
|
212 |
+
|
213 |
+
# Predict depth maps (batched)
|
214 |
+
depth_pred_ls = []
|
215 |
+
if show_progress_bar:
|
216 |
+
iterable = tqdm(
|
217 |
+
batch_loader, desc=" " * 2 + "Inference batches", leave=False
|
218 |
+
)
|
219 |
+
else:
|
220 |
+
iterable = batch_loader
|
221 |
+
depth_latent = None
|
222 |
+
for batch in iterable:
|
223 |
+
(batched_img,) = batch
|
224 |
+
depth_pred_raw, depth_latent = self.single_infer(
|
225 |
+
rgb_in=batched_img,
|
226 |
+
num_inference_steps=denoising_steps,
|
227 |
+
depth_latent_init=depth_latent_init,
|
228 |
+
depth_latent_init_strength=depth_latent_init_strength,
|
229 |
+
seed=seed,
|
230 |
+
show_pbar=show_progress_bar,
|
231 |
+
)
|
232 |
+
depth_pred_ls.append(depth_pred_raw.detach())
|
233 |
+
depth_preds = torch.concat(depth_pred_ls, dim=0).squeeze()
|
234 |
+
torch.cuda.empty_cache() # clear vram cache for ensembling
|
235 |
+
|
236 |
+
# ----------------- Test-time ensembling -----------------
|
237 |
+
if ensemble_size > 1:
|
238 |
+
depth_pred, pred_uncert = self.ensemble_depths(
|
239 |
+
depth_preds, **(ensemble_kwargs or {})
|
240 |
+
)
|
241 |
+
else:
|
242 |
+
depth_pred = depth_preds
|
243 |
+
pred_uncert = None
|
244 |
+
|
245 |
+
# ----------------- Post processing -----------------
|
246 |
+
# Scale prediction to [0, 1]
|
247 |
+
min_d = torch.min(depth_pred)
|
248 |
+
max_d = torch.max(depth_pred)
|
249 |
+
depth_pred = (depth_pred - min_d) / (max_d - min_d)
|
250 |
+
if ensemble_size > 1:
|
251 |
+
depth_latent = self._encode_depth(2 * depth_pred - 1)
|
252 |
+
|
253 |
+
# Convert to numpy
|
254 |
+
depth_pred = depth_pred.cpu().numpy().astype(np.float32)
|
255 |
+
|
256 |
+
# Resize back to original resolution
|
257 |
+
if match_input_res:
|
258 |
+
pred_img = Image.fromarray(depth_pred)
|
259 |
+
pred_img = pred_img.resize(input_size)
|
260 |
+
depth_pred = np.asarray(pred_img)
|
261 |
+
|
262 |
+
# Clip output range
|
263 |
+
depth_pred = depth_pred.clip(0, 1)
|
264 |
+
|
265 |
+
# Colorize
|
266 |
+
if color_map is not None:
|
267 |
+
depth_colored = self.colorize_depth_maps(
|
268 |
+
depth_pred, 0, 1, cmap=color_map
|
269 |
+
).squeeze() # [3, H, W], value in (0, 1)
|
270 |
+
depth_colored = (depth_colored * 255).astype(np.uint8)
|
271 |
+
depth_colored_hwc = self.chw2hwc(depth_colored)
|
272 |
+
depth_colored_img = Image.fromarray(depth_colored_hwc)
|
273 |
+
else:
|
274 |
+
depth_colored_img = None
|
275 |
+
return MarigoldDepthConsistencyOutput(
|
276 |
+
depth_np=depth_pred,
|
277 |
+
depth_colored=depth_colored_img,
|
278 |
+
depth_latent=depth_latent,
|
279 |
+
uncertainty=pred_uncert,
|
280 |
+
)
|
281 |
+
|
282 |
+
def _encode_empty_text(self):
|
283 |
+
"""
|
284 |
+
Encode text embedding for empty prompt.
|
285 |
+
"""
|
286 |
+
prompt = ""
|
287 |
+
text_inputs = self.tokenizer(
|
288 |
+
prompt,
|
289 |
+
padding="do_not_pad",
|
290 |
+
max_length=self.tokenizer.model_max_length,
|
291 |
+
truncation=True,
|
292 |
+
return_tensors="pt",
|
293 |
+
)
|
294 |
+
text_input_ids = text_inputs.input_ids.to(self.text_encoder.device)
|
295 |
+
self.empty_text_embed = self.text_encoder(text_input_ids)[0].to(self.dtype)
|
296 |
+
|
297 |
+
@torch.no_grad()
|
298 |
+
def single_infer(
|
299 |
+
self,
|
300 |
+
rgb_in: torch.Tensor,
|
301 |
+
num_inference_steps: int,
|
302 |
+
depth_latent_init: torch.Tensor,
|
303 |
+
depth_latent_init_strength: float,
|
304 |
+
seed: int,
|
305 |
+
show_pbar: bool,
|
306 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
307 |
+
"""
|
308 |
+
Perform an individual depth prediction without ensembling.
|
309 |
+
|
310 |
+
Args:
|
311 |
+
rgb_in (`torch.Tensor`):
|
312 |
+
Input RGB image.
|
313 |
+
num_inference_steps (`int`):
|
314 |
+
Number of diffusion denoisign steps (DDIM) during inference.
|
315 |
+
depth_latent_init (`torch.Tensor`, `optional`):
|
316 |
+
Initial depth latent
|
317 |
+
depth_latent_init_strength (`float`, `optional`):
|
318 |
+
Degree of initial depth latent influence, must be between 0 and 1
|
319 |
+
seed (`int`, *optional*, defaults to `None`)
|
320 |
+
Reproducibility seed.
|
321 |
+
show_pbar (`bool`):
|
322 |
+
Display a progress bar of diffusion denoising.
|
323 |
+
Returns:
|
324 |
+
`torch.Tensor`: Predicted depth map.
|
325 |
+
"""
|
326 |
+
device = rgb_in.device
|
327 |
+
|
328 |
+
# Set timesteps
|
329 |
+
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
330 |
+
timesteps = self.scheduler.timesteps # [T]
|
331 |
+
|
332 |
+
# Encode image
|
333 |
+
rgb_latent = self._encode_rgb(rgb_in)
|
334 |
+
|
335 |
+
# Initial depth map (noise)
|
336 |
+
if seed is None:
|
337 |
+
rng = None
|
338 |
+
else:
|
339 |
+
rng = torch.Generator(device=device)
|
340 |
+
rng.manual_seed(seed)
|
341 |
+
depth_latent = torch.randn(
|
342 |
+
rgb_latent.shape, device=device, dtype=self.dtype, generator=rng
|
343 |
+
) # [B, 4, h, w]
|
344 |
+
|
345 |
+
if depth_latent_init is not None:
|
346 |
+
assert 0.0 <= depth_latent_init_strength <= 1.0
|
347 |
+
assert (
|
348 |
+
depth_latent_init.dim() == 4
|
349 |
+
and depth_latent.dim() == 4
|
350 |
+
and depth_latent_init.shape[0] == 1
|
351 |
+
)
|
352 |
+
if depth_latent.shape[0] != 1:
|
353 |
+
depth_latent_init = depth_latent_init.repeat(
|
354 |
+
depth_latent.shape[0], 1, 1, 1
|
355 |
+
)
|
356 |
+
depth_latent *= 1.0 - depth_latent_init_strength
|
357 |
+
depth_latent = depth_latent + depth_latent_init * depth_latent_init_strength
|
358 |
+
|
359 |
+
# Batched empty text embedding
|
360 |
+
if self.empty_text_embed is None:
|
361 |
+
self._encode_empty_text()
|
362 |
+
batch_empty_text_embed = self.empty_text_embed.repeat(
|
363 |
+
(rgb_latent.shape[0], 1, 1)
|
364 |
+
) # [B, 2, 1024]
|
365 |
+
|
366 |
+
# Denoising loop
|
367 |
+
if show_pbar:
|
368 |
+
iterable = tqdm(
|
369 |
+
enumerate(timesteps),
|
370 |
+
total=len(timesteps),
|
371 |
+
leave=False,
|
372 |
+
desc=" " * 4 + "Diffusion denoising",
|
373 |
+
)
|
374 |
+
else:
|
375 |
+
iterable = enumerate(timesteps)
|
376 |
+
|
377 |
+
for i, t in iterable:
|
378 |
+
unet_input = torch.cat(
|
379 |
+
[rgb_latent, depth_latent], dim=1
|
380 |
+
) # this order is important
|
381 |
+
|
382 |
+
# predict the noise residual
|
383 |
+
noise_pred = self.unet(
|
384 |
+
unet_input, t, encoder_hidden_states=batch_empty_text_embed
|
385 |
+
).sample # [B, 4, h, w]
|
386 |
+
|
387 |
+
# compute the previous noisy sample x_t -> x_t-1
|
388 |
+
depth_latent = self.scheduler.step(noise_pred, t, depth_latent).prev_sample
|
389 |
+
|
390 |
+
depth = self._decode_depth(depth_latent)
|
391 |
+
|
392 |
+
# clip prediction
|
393 |
+
depth = torch.clip(depth, -1.0, 1.0)
|
394 |
+
# shift to [0, 1]
|
395 |
+
depth = (depth + 1.0) / 2.0
|
396 |
+
|
397 |
+
return depth, depth_latent
|
398 |
+
|
399 |
+
def _encode_depth(self, depth_in: torch.Tensor) -> torch.Tensor:
|
400 |
+
"""
|
401 |
+
Encode depth image into latent.
|
402 |
+
|
403 |
+
Args:
|
404 |
+
depth_in (`torch.Tensor`):
|
405 |
+
Input Depth image to be encoded.
|
406 |
+
|
407 |
+
Returns:
|
408 |
+
`torch.Tensor`: Depth latent.
|
409 |
+
"""
|
410 |
+
# encode
|
411 |
+
dims = depth_in.squeeze().shape
|
412 |
+
h = self.vae.encoder(depth_in.reshape(1, 1, *dims).repeat(1, 3, 1, 1))
|
413 |
+
moments = self.vae.quant_conv(h)
|
414 |
+
mean, _ = torch.chunk(moments, 2, dim=1)
|
415 |
+
depth_latent = mean * self.depth_latent_scale_factor
|
416 |
+
return depth_latent
|
417 |
+
|
418 |
+
def _encode_rgb(self, rgb_in: torch.Tensor) -> torch.Tensor:
|
419 |
+
"""
|
420 |
+
Encode RGB image into latent.
|
421 |
+
|
422 |
+
Args:
|
423 |
+
rgb_in (`torch.Tensor`):
|
424 |
+
Input RGB image to be encoded.
|
425 |
+
|
426 |
+
Returns:
|
427 |
+
`torch.Tensor`: Image latent.
|
428 |
+
"""
|
429 |
+
# encode
|
430 |
+
h = self.vae.encoder(rgb_in)
|
431 |
+
moments = self.vae.quant_conv(h)
|
432 |
+
mean, logvar = torch.chunk(moments, 2, dim=1)
|
433 |
+
# scale latent
|
434 |
+
rgb_latent = mean * self.rgb_latent_scale_factor
|
435 |
+
return rgb_latent
|
436 |
+
|
437 |
+
def _decode_depth(self, depth_latent: torch.Tensor) -> torch.Tensor:
|
438 |
+
"""
|
439 |
+
Decode depth latent into depth map.
|
440 |
+
|
441 |
+
Args:
|
442 |
+
depth_latent (`torch.Tensor`):
|
443 |
+
Depth latent to be decoded.
|
444 |
+
|
445 |
+
Returns:
|
446 |
+
`torch.Tensor`: Decoded depth map.
|
447 |
+
"""
|
448 |
+
# scale latent
|
449 |
+
depth_latent = depth_latent / self.depth_latent_scale_factor
|
450 |
+
# decode
|
451 |
+
z = self.vae.post_quant_conv(depth_latent)
|
452 |
+
stacked = self.vae.decoder(z)
|
453 |
+
# mean of output channels
|
454 |
+
depth_mean = stacked.mean(dim=1, keepdim=True)
|
455 |
+
return depth_mean
|
456 |
+
|
457 |
+
@staticmethod
|
458 |
+
def resize_max_res(img: Image.Image, max_edge_resolution: int) -> Image.Image:
|
459 |
+
"""
|
460 |
+
Resize image to limit maximum edge length while keeping aspect ratio.
|
461 |
+
|
462 |
+
Args:
|
463 |
+
img (`Image.Image`):
|
464 |
+
Image to be resized.
|
465 |
+
max_edge_resolution (`int`):
|
466 |
+
Maximum edge length (pixel).
|
467 |
+
|
468 |
+
Returns:
|
469 |
+
`Image.Image`: Resized image.
|
470 |
+
"""
|
471 |
+
original_width, original_height = img.size
|
472 |
+
downscale_factor = min(
|
473 |
+
max_edge_resolution / original_width, max_edge_resolution / original_height
|
474 |
+
)
|
475 |
+
|
476 |
+
new_width = int(original_width * downscale_factor)
|
477 |
+
new_height = int(original_height * downscale_factor)
|
478 |
+
|
479 |
+
resized_img = img.resize((new_width, new_height))
|
480 |
+
return resized_img
|
481 |
+
|
482 |
+
@staticmethod
|
483 |
+
def colorize_depth_maps(
|
484 |
+
depth_map, min_depth, max_depth, cmap="Spectral", valid_mask=None
|
485 |
+
):
|
486 |
+
"""
|
487 |
+
Colorize depth maps.
|
488 |
+
"""
|
489 |
+
assert len(depth_map.shape) >= 2, "Invalid dimension"
|
490 |
+
|
491 |
+
if isinstance(depth_map, torch.Tensor):
|
492 |
+
depth = depth_map.detach().squeeze().numpy()
|
493 |
+
elif isinstance(depth_map, np.ndarray):
|
494 |
+
depth = depth_map.copy().squeeze()
|
495 |
+
# reshape to [ (B,) H, W ]
|
496 |
+
if depth.ndim < 3:
|
497 |
+
depth = depth[np.newaxis, :, :]
|
498 |
+
|
499 |
+
# colorize
|
500 |
+
cm = matplotlib.colormaps[cmap]
|
501 |
+
depth = ((depth - min_depth) / (max_depth - min_depth)).clip(0, 1)
|
502 |
+
img_colored_np = cm(depth, bytes=False)[:, :, :, 0:3] # value from 0 to 1
|
503 |
+
img_colored_np = np.rollaxis(img_colored_np, 3, 1)
|
504 |
+
|
505 |
+
if valid_mask is not None:
|
506 |
+
if isinstance(depth_map, torch.Tensor):
|
507 |
+
valid_mask = valid_mask.detach().numpy()
|
508 |
+
valid_mask = valid_mask.squeeze() # [H, W] or [B, H, W]
|
509 |
+
if valid_mask.ndim < 3:
|
510 |
+
valid_mask = valid_mask[np.newaxis, np.newaxis, :, :]
|
511 |
+
else:
|
512 |
+
valid_mask = valid_mask[:, np.newaxis, :, :]
|
513 |
+
valid_mask = np.repeat(valid_mask, 3, axis=1)
|
514 |
+
img_colored_np[~valid_mask] = 0
|
515 |
+
|
516 |
+
if isinstance(depth_map, torch.Tensor):
|
517 |
+
img_colored = torch.from_numpy(img_colored_np).float()
|
518 |
+
elif isinstance(depth_map, np.ndarray):
|
519 |
+
img_colored = img_colored_np
|
520 |
+
|
521 |
+
return img_colored
|
522 |
+
|
523 |
+
@staticmethod
|
524 |
+
def chw2hwc(chw):
|
525 |
+
assert 3 == len(chw.shape)
|
526 |
+
if isinstance(chw, torch.Tensor):
|
527 |
+
hwc = torch.permute(chw, (1, 2, 0))
|
528 |
+
elif isinstance(chw, np.ndarray):
|
529 |
+
hwc = np.moveaxis(chw, 0, -1)
|
530 |
+
return hwc
|
531 |
+
|
532 |
+
@staticmethod
|
533 |
+
def _find_batch_size(ensemble_size: int, input_res: int, dtype: torch.dtype) -> int:
|
534 |
+
"""
|
535 |
+
Automatically search for suitable operating batch size.
|
536 |
+
|
537 |
+
Args:
|
538 |
+
ensemble_size (`int`):
|
539 |
+
Number of predictions to be ensembled.
|
540 |
+
input_res (`int`):
|
541 |
+
Operating resolution of the input image.
|
542 |
+
|
543 |
+
Returns:
|
544 |
+
`int`: Operating batch size.
|
545 |
+
"""
|
546 |
+
# Search table for suggested max. inference batch size
|
547 |
+
bs_search_table = [
|
548 |
+
# tested on A100-PCIE-80GB
|
549 |
+
{"res": 768, "total_vram": 79, "bs": 35, "dtype": torch.float32},
|
550 |
+
{"res": 1024, "total_vram": 79, "bs": 20, "dtype": torch.float32},
|
551 |
+
# tested on A100-PCIE-40GB
|
552 |
+
{"res": 768, "total_vram": 39, "bs": 15, "dtype": torch.float32},
|
553 |
+
{"res": 1024, "total_vram": 39, "bs": 8, "dtype": torch.float32},
|
554 |
+
{"res": 768, "total_vram": 39, "bs": 30, "dtype": torch.float16},
|
555 |
+
{"res": 1024, "total_vram": 39, "bs": 15, "dtype": torch.float16},
|
556 |
+
# tested on RTX3090, RTX4090
|
557 |
+
{"res": 512, "total_vram": 23, "bs": 20, "dtype": torch.float32},
|
558 |
+
{"res": 768, "total_vram": 23, "bs": 7, "dtype": torch.float32},
|
559 |
+
{"res": 1024, "total_vram": 23, "bs": 3, "dtype": torch.float32},
|
560 |
+
{"res": 512, "total_vram": 23, "bs": 40, "dtype": torch.float16},
|
561 |
+
{"res": 768, "total_vram": 23, "bs": 18, "dtype": torch.float16},
|
562 |
+
{"res": 1024, "total_vram": 23, "bs": 10, "dtype": torch.float16},
|
563 |
+
# tested on GTX1080Ti
|
564 |
+
{"res": 512, "total_vram": 10, "bs": 5, "dtype": torch.float32},
|
565 |
+
{"res": 768, "total_vram": 10, "bs": 2, "dtype": torch.float32},
|
566 |
+
{"res": 512, "total_vram": 10, "bs": 10, "dtype": torch.float16},
|
567 |
+
{"res": 768, "total_vram": 10, "bs": 5, "dtype": torch.float16},
|
568 |
+
{"res": 1024, "total_vram": 10, "bs": 3, "dtype": torch.float16},
|
569 |
+
]
|
570 |
+
|
571 |
+
if not torch.cuda.is_available():
|
572 |
+
return 1
|
573 |
+
|
574 |
+
total_vram = torch.cuda.mem_get_info()[1] / 1024.0**3
|
575 |
+
filtered_bs_search_table = [s for s in bs_search_table if s["dtype"] == dtype]
|
576 |
+
for settings in sorted(
|
577 |
+
filtered_bs_search_table,
|
578 |
+
key=lambda k: (k["res"], -k["total_vram"]),
|
579 |
+
):
|
580 |
+
if input_res <= settings["res"] and total_vram >= settings["total_vram"]:
|
581 |
+
bs = settings["bs"]
|
582 |
+
if bs > ensemble_size:
|
583 |
+
bs = ensemble_size
|
584 |
+
elif bs > math.ceil(ensemble_size / 2) and bs < ensemble_size:
|
585 |
+
bs = math.ceil(ensemble_size / 2)
|
586 |
+
return bs
|
587 |
+
|
588 |
+
return 1
|
589 |
+
|
590 |
+
@staticmethod
|
591 |
+
def ensemble_depths(
|
592 |
+
input_images: torch.Tensor,
|
593 |
+
regularizer_strength: float = 0.02,
|
594 |
+
max_iter: int = 2,
|
595 |
+
tol: float = 1e-3,
|
596 |
+
reduction: str = "median",
|
597 |
+
max_res: int = None,
|
598 |
+
):
|
599 |
+
"""
|
600 |
+
To ensemble multiple affine-invariant depth images (up to scale and shift),
|
601 |
+
by aligning estimating the scale and shift
|
602 |
+
"""
|
603 |
+
|
604 |
+
def inter_distances(tensors: torch.Tensor):
|
605 |
+
"""
|
606 |
+
To calculate the distance between each two depth maps.
|
607 |
+
"""
|
608 |
+
distances = []
|
609 |
+
for i, j in torch.combinations(torch.arange(tensors.shape[0])):
|
610 |
+
arr1 = tensors[i : i + 1]
|
611 |
+
arr2 = tensors[j : j + 1]
|
612 |
+
distances.append(arr1 - arr2)
|
613 |
+
dist = torch.concatenate(distances, dim=0)
|
614 |
+
return dist
|
615 |
+
|
616 |
+
device = input_images.device
|
617 |
+
dtype = input_images.dtype
|
618 |
+
np_dtype = np.float32
|
619 |
+
|
620 |
+
original_input = input_images.clone()
|
621 |
+
n_img = input_images.shape[0]
|
622 |
+
ori_shape = input_images.shape
|
623 |
+
|
624 |
+
if max_res is not None:
|
625 |
+
scale_factor = torch.min(max_res / torch.tensor(ori_shape[-2:]))
|
626 |
+
if scale_factor < 1:
|
627 |
+
downscaler = torch.nn.Upsample(
|
628 |
+
scale_factor=scale_factor, mode="nearest"
|
629 |
+
)
|
630 |
+
input_images = downscaler(torch.from_numpy(input_images)).numpy()
|
631 |
+
|
632 |
+
# init guess
|
633 |
+
_min = np.min(input_images.reshape((n_img, -1)).cpu().numpy(), axis=1)
|
634 |
+
_max = np.max(input_images.reshape((n_img, -1)).cpu().numpy(), axis=1)
|
635 |
+
s_init = 1.0 / (_max - _min).reshape((-1, 1, 1))
|
636 |
+
t_init = (-1 * s_init.flatten() * _min.flatten()).reshape((-1, 1, 1))
|
637 |
+
x = np.concatenate([s_init, t_init]).reshape(-1).astype(np_dtype)
|
638 |
+
|
639 |
+
input_images = input_images.to(device)
|
640 |
+
|
641 |
+
# objective function
|
642 |
+
def closure(x):
|
643 |
+
l = len(x)
|
644 |
+
s = x[: int(l / 2)]
|
645 |
+
t = x[int(l / 2) :]
|
646 |
+
s = torch.from_numpy(s).to(dtype=dtype).to(device)
|
647 |
+
t = torch.from_numpy(t).to(dtype=dtype).to(device)
|
648 |
+
|
649 |
+
transformed_arrays = input_images * s.view((-1, 1, 1)) + t.view((-1, 1, 1))
|
650 |
+
dists = inter_distances(transformed_arrays)
|
651 |
+
sqrt_dist = torch.sqrt(torch.mean(dists**2))
|
652 |
+
|
653 |
+
if "mean" == reduction:
|
654 |
+
pred = torch.mean(transformed_arrays, dim=0)
|
655 |
+
elif "median" == reduction:
|
656 |
+
pred = torch.median(transformed_arrays, dim=0).values
|
657 |
+
else:
|
658 |
+
raise ValueError
|
659 |
+
|
660 |
+
near_err = torch.sqrt((0 - torch.min(pred)) ** 2)
|
661 |
+
far_err = torch.sqrt((1 - torch.max(pred)) ** 2)
|
662 |
+
|
663 |
+
err = sqrt_dist + (near_err + far_err) * regularizer_strength
|
664 |
+
err = err.detach().cpu().numpy().astype(np_dtype)
|
665 |
+
return err
|
666 |
+
|
667 |
+
res = minimize(
|
668 |
+
closure,
|
669 |
+
x,
|
670 |
+
method="BFGS",
|
671 |
+
tol=tol,
|
672 |
+
options={"maxiter": max_iter, "disp": False},
|
673 |
+
)
|
674 |
+
x = res.x
|
675 |
+
l = len(x)
|
676 |
+
s = x[: int(l / 2)]
|
677 |
+
t = x[int(l / 2) :]
|
678 |
+
|
679 |
+
# Prediction
|
680 |
+
s = torch.from_numpy(s).to(dtype=dtype).to(device)
|
681 |
+
t = torch.from_numpy(t).to(dtype=dtype).to(device)
|
682 |
+
transformed_arrays = original_input * s.view(-1, 1, 1) + t.view(-1, 1, 1)
|
683 |
+
if "mean" == reduction:
|
684 |
+
aligned_images = torch.mean(transformed_arrays, dim=0)
|
685 |
+
std = torch.std(transformed_arrays, dim=0)
|
686 |
+
uncertainty = std
|
687 |
+
elif "median" == reduction:
|
688 |
+
aligned_images = torch.median(transformed_arrays, dim=0).values
|
689 |
+
# MAD (median absolute deviation) as uncertainty indicator
|
690 |
+
abs_dev = torch.abs(transformed_arrays - aligned_images)
|
691 |
+
mad = torch.median(abs_dev, dim=0).values
|
692 |
+
uncertainty = mad
|
693 |
+
else:
|
694 |
+
raise ValueError(f"Unknown reduction method: {reduction}")
|
695 |
+
|
696 |
+
# Scale and shift to [0, 1]
|
697 |
+
_min = torch.min(aligned_images)
|
698 |
+
_max = torch.max(aligned_images)
|
699 |
+
aligned_images = (aligned_images - _min) / (_max - _min)
|
700 |
+
uncertainty /= _max - _min
|
701 |
+
|
702 |
+
return aligned_images, uncertainty
|
marigold_logo_square.jpg
ADDED
Git LFS Details
|
requirements.txt
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio==4.22.0
|
2 |
+
gradio-imageslider==0.0.16
|
3 |
+
pygltflib==1.16.1
|
4 |
+
trimesh==4.0.5
|
5 |
+
imageio
|
6 |
+
imageio-ffmpeg
|
7 |
+
Pillow
|
8 |
+
|
9 |
+
accelerate>=0.22.0
|
10 |
+
diffusers==0.27.2
|
11 |
+
matplotlib==3.8.2
|
12 |
+
scipy==1.11.4
|
13 |
+
torch==2.0.1
|
14 |
+
transformers>=4.32.1
|
15 |
+
xformers>=0.0.21
|