Spaces:
Running
on
Zero
Running
on
Zero
add feedback collection functionality through HF OAuth
Browse files- README.md +2 -0
- app.py +292 -48
- extrude.py +3 -1
- flagging.py +387 -0
- marigold_depth_estimation_lcm.py +3 -1
- requirements.txt +5 -5
README.md
CHANGED
@@ -10,6 +10,8 @@ pinned: true
|
|
10 |
license: cc-by-sa-4.0
|
11 |
models:
|
12 |
- prs-eth/marigold-lcm-v1-0
|
|
|
|
|
13 |
---
|
14 |
|
15 |
This is a demo of Marigold-LCM, the state-of-the-art depth estimator for images in the wild.
|
|
|
10 |
license: cc-by-sa-4.0
|
11 |
models:
|
12 |
- prs-eth/marigold-lcm-v1-0
|
13 |
+
hf_oauth: true
|
14 |
+
hf_oauth_expiration_minutes: 43200
|
15 |
---
|
16 |
|
17 |
This is a demo of Marigold-LCM, the state-of-the-art depth estimator for images in the wild.
|
app.py
CHANGED
@@ -16,18 +16,19 @@
|
|
16 |
# Please find bibtex at: https://github.com/prs-eth/Marigold#-citation
|
17 |
# More information about the method can be found at https://marigoldmonodepth.github.io
|
18 |
# --------------------------------------------------------------------------
|
19 |
-
|
20 |
|
21 |
import functools
|
22 |
import os
|
23 |
import tempfile
|
|
|
24 |
import zipfile
|
25 |
from io import BytesIO
|
26 |
|
27 |
-
import spaces
|
28 |
import gradio as gr
|
29 |
import imageio as imageio
|
30 |
import numpy as np
|
|
|
31 |
import torch as torch
|
32 |
from PIL import Image
|
33 |
from gradio_imageslider import ImageSlider
|
@@ -35,8 +36,13 @@ from huggingface_hub import login
|
|
35 |
from tqdm import tqdm
|
36 |
|
37 |
from extrude import extrude_depth_3d
|
|
|
38 |
from marigold_depth_estimation_lcm import MarigoldDepthConsistencyPipeline
|
39 |
|
|
|
|
|
|
|
|
|
40 |
default_seed = 2024
|
41 |
|
42 |
default_image_denoise_steps = 4
|
@@ -64,6 +70,16 @@ default_bas_frame_thickness = 5
|
|
64 |
default_bas_frame_near = 1
|
65 |
default_bas_frame_far = 1
|
66 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
|
68 |
def process_image(
|
69 |
pipe,
|
@@ -72,6 +88,14 @@ def process_image(
|
|
72 |
ensemble_size=default_image_ensemble_size,
|
73 |
processing_res=default_image_processing_res,
|
74 |
):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
input_image = Image.open(path_input)
|
76 |
|
77 |
pipe_out = pipe(
|
@@ -88,13 +112,6 @@ def process_image(
|
|
88 |
depth_colored = pipe_out.depth_colored
|
89 |
depth_16bit = (depth_pred * 65535.0).astype(np.uint16)
|
90 |
|
91 |
-
path_output_dir = tempfile.mkdtemp()
|
92 |
-
|
93 |
-
name_base = os.path.splitext(os.path.basename(path_input))[0]
|
94 |
-
path_out_fp32 = os.path.join(path_output_dir, f"{name_base}_depth_fp32.npy")
|
95 |
-
path_out_16bit = os.path.join(path_output_dir, f"{name_base}_depth_16bit.png")
|
96 |
-
path_out_vis = os.path.join(path_output_dir, f"{name_base}_depth_colored.png")
|
97 |
-
|
98 |
np.save(path_out_fp32, depth_pred)
|
99 |
Image.fromarray(depth_16bit).save(path_out_16bit, mode="I;16")
|
100 |
depth_colored.save(path_out_vis)
|
@@ -116,9 +133,15 @@ def process_video(
|
|
116 |
out_max_frames=default_video_out_max_frames,
|
117 |
progress=gr.Progress(),
|
118 |
):
|
119 |
-
|
|
|
|
|
|
|
120 |
|
121 |
-
name_base = os.path.splitext(os.path.basename(path_input))
|
|
|
|
|
|
|
122 |
path_out_vis = os.path.join(path_output_dir, f"{name_base}_depth_colored.mp4")
|
123 |
path_out_16bit = os.path.join(path_output_dir, f"{name_base}_depth_16bit.zip")
|
124 |
|
@@ -218,12 +241,18 @@ def process_bas(
|
|
218 |
frame_near=default_bas_frame_near,
|
219 |
frame_far=default_bas_frame_far,
|
220 |
):
|
|
|
|
|
|
|
|
|
|
|
221 |
if plane_near >= plane_far:
|
222 |
raise gr.Error("NEAR plane must have a value smaller than the FAR plane")
|
223 |
|
224 |
-
path_output_dir = tempfile.mkdtemp()
|
225 |
-
|
226 |
name_base, name_ext = os.path.splitext(os.path.basename(path_input))
|
|
|
|
|
|
|
227 |
|
228 |
input_image = Image.open(path_input)
|
229 |
|
@@ -267,9 +296,11 @@ def process_bas(
|
|
267 |
path_glb, path_stl = extrude_depth_3d(
|
268 |
image_rgb_new,
|
269 |
image_depth_new,
|
270 |
-
output_model_scale=
|
271 |
-
|
272 |
-
|
|
|
|
|
273 |
filter_size=filter_size,
|
274 |
coef_near=plane_near,
|
275 |
coef_far=plane_far,
|
@@ -288,17 +319,22 @@ def process_bas(
|
|
288 |
256, filter_size, vertex_colors=False, scene_lights=True, output_model_scale=1
|
289 |
)
|
290 |
path_files_glb, path_files_stl = _process_3d(
|
291 |
-
size_longest_px,
|
|
|
|
|
|
|
|
|
292 |
)
|
293 |
|
294 |
return path_viewer_glb, [path_files_glb, path_files_stl]
|
295 |
|
296 |
|
297 |
-
def run_demo_server(pipe):
|
298 |
process_pipe_image = spaces.GPU(functools.partial(process_image, pipe))
|
299 |
-
process_pipe_video = spaces.GPU(
|
|
|
|
|
300 |
process_pipe_bas = spaces.GPU(functools.partial(process_bas, pipe))
|
301 |
-
os.environ["GRADIO_ALLOW_FLAGGING"] = "never"
|
302 |
|
303 |
gradio_theme = gr.themes.Default()
|
304 |
|
@@ -332,6 +368,9 @@ def run_demo_server(pipe):
|
|
332 |
text-align: center;
|
333 |
display: block;
|
334 |
}
|
|
|
|
|
|
|
335 |
""",
|
336 |
head="""
|
337 |
<script async src="https://www.googletagmanager.com/gtag/js?id=G-1FWSVCGZTG"></script>
|
@@ -343,35 +382,70 @@ def run_demo_server(pipe):
|
|
343 |
</script>
|
344 |
""",
|
345 |
) as demo:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
346 |
gr.Markdown(
|
347 |
"""
|
348 |
# Marigold-LCM Depth Estimation
|
349 |
<p align="center">
|
350 |
-
<a title="Website" href="https://marigoldmonodepth.github.io/" target="_blank" rel="noopener noreferrer"
|
|
|
351 |
<img src="https://www.obukhov.ai/img/badges/badge-website.svg">
|
352 |
</a>
|
353 |
-
<a title="arXiv" href="https://arxiv.org/abs/2312.02145" target="_blank" rel="noopener noreferrer"
|
|
|
354 |
<img src="https://www.obukhov.ai/img/badges/badge-pdf.svg">
|
355 |
</a>
|
356 |
-
<a title="Github" href="https://github.com/prs-eth/marigold" target="_blank" rel="noopener noreferrer"
|
357 |
-
|
|
|
|
|
358 |
</a>
|
359 |
-
<a title="Social" href="https://twitter.com/antonobukhov1" target="_blank" rel="noopener noreferrer"
|
|
|
360 |
<img src="https://www.obukhov.ai/img/badges/badge-social.svg" alt="social">
|
361 |
</a>
|
362 |
</p>
|
363 |
<p align="justify">
|
364 |
-
Marigold-LCM is the fast version of Marigold, the state-of-the-art depth estimator for images in the
|
365 |
-
It combines the power of the original Marigold 10-step estimator and the Latent Consistency
|
366 |
-
|
367 |
-
|
368 |
-
|
369 |
-
|
370 |
-
|
|
|
|
|
|
|
371 |
</p>
|
372 |
"""
|
373 |
)
|
374 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
375 |
with gr.Tabs(elem_classes=["tabs"]):
|
376 |
with gr.Tab("Image"):
|
377 |
with gr.Row():
|
@@ -423,6 +497,42 @@ def run_demo_server(pipe):
|
|
423 |
elem_id="download",
|
424 |
interactive=False,
|
425 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
426 |
gr.Examples(
|
427 |
fn=process_pipe_image,
|
428 |
examples=[
|
@@ -502,7 +612,8 @@ def run_demo_server(pipe):
|
|
502 |
"""
|
503 |
<p align="justify">
|
504 |
This part of the demo uses Marigold-LCM to create a bas-relief model.
|
505 |
-
The models are watertight, with correct normals, and exported in the STL format, which makes
|
|
|
506 |
</p>
|
507 |
""",
|
508 |
)
|
@@ -513,7 +624,9 @@ def run_demo_server(pipe):
|
|
513 |
type="filepath",
|
514 |
)
|
515 |
with gr.Row():
|
516 |
-
bas_submit_btn = gr.Button(
|
|
|
|
|
517 |
bas_reset_btn = gr.Button(value="Reset")
|
518 |
with gr.Accordion("3D printing demo: Main options", open=True):
|
519 |
bas_plane_near = gr.Slider(
|
@@ -537,7 +650,9 @@ def run_demo_server(pipe):
|
|
537 |
step=1,
|
538 |
value=default_bas_embossing,
|
539 |
)
|
540 |
-
with gr.Accordion(
|
|
|
|
|
541 |
bas_denoise_steps = gr.Slider(
|
542 |
label="Number of denoising steps",
|
543 |
minimum=1,
|
@@ -682,17 +797,66 @@ def run_demo_server(pipe):
|
|
682 |
cache_examples=True,
|
683 |
)
|
684 |
|
685 |
-
|
686 |
-
|
687 |
-
|
688 |
-
|
689 |
-
|
690 |
-
|
691 |
-
|
692 |
-
|
693 |
-
|
694 |
-
|
695 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
696 |
|
697 |
image_reset_btn.click(
|
698 |
fn=lambda: (
|
@@ -712,9 +876,73 @@ def run_demo_server(pipe):
|
|
712 |
image_denoise_steps,
|
713 |
image_processing_res,
|
714 |
],
|
715 |
-
|
716 |
)
|
717 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
718 |
video_submit_btn.click(
|
719 |
fn=process_pipe_video,
|
720 |
inputs=[video_input],
|
@@ -729,6 +957,8 @@ def run_demo_server(pipe):
|
|
729 |
concurrency_limit=1,
|
730 |
)
|
731 |
|
|
|
|
|
732 |
bas_submit_btn.click(
|
733 |
fn=process_pipe_bas,
|
734 |
inputs=[
|
@@ -791,6 +1021,8 @@ def run_demo_server(pipe):
|
|
791 |
concurrency_limit=1,
|
792 |
)
|
793 |
|
|
|
|
|
794 |
demo.queue(
|
795 |
api_open=False,
|
796 |
).launch(
|
@@ -801,6 +1033,7 @@ def run_demo_server(pipe):
|
|
801 |
|
802 |
def main():
|
803 |
CHECKPOINT = "prs-eth/marigold-lcm-v1-0"
|
|
|
804 |
|
805 |
if "HF_TOKEN_LOGIN" in os.environ:
|
806 |
login(token=os.environ["HF_TOKEN_LOGIN"])
|
@@ -816,7 +1049,18 @@ def main():
|
|
816 |
pass # run without xformers
|
817 |
|
818 |
pipe = pipe.to(device)
|
819 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
820 |
|
821 |
|
822 |
if __name__ == "__main__":
|
|
|
16 |
# Please find bibtex at: https://github.com/prs-eth/Marigold#-citation
|
17 |
# More information about the method can be found at https://marigoldmonodepth.github.io
|
18 |
# --------------------------------------------------------------------------
|
19 |
+
from __future__ import annotations
|
20 |
|
21 |
import functools
|
22 |
import os
|
23 |
import tempfile
|
24 |
+
import warnings
|
25 |
import zipfile
|
26 |
from io import BytesIO
|
27 |
|
|
|
28 |
import gradio as gr
|
29 |
import imageio as imageio
|
30 |
import numpy as np
|
31 |
+
import spaces
|
32 |
import torch as torch
|
33 |
from PIL import Image
|
34 |
from gradio_imageslider import ImageSlider
|
|
|
36 |
from tqdm import tqdm
|
37 |
|
38 |
from extrude import extrude_depth_3d
|
39 |
+
from flagging import FlagMethod, HuggingFaceDatasetSaver
|
40 |
from marigold_depth_estimation_lcm import MarigoldDepthConsistencyPipeline
|
41 |
|
42 |
+
warnings.filterwarnings(
|
43 |
+
"ignore", message=".*LoginButton created outside of a Blocks context.*"
|
44 |
+
)
|
45 |
+
|
46 |
default_seed = 2024
|
47 |
|
48 |
default_image_denoise_steps = 4
|
|
|
70 |
default_bas_frame_near = 1
|
71 |
default_bas_frame_far = 1
|
72 |
|
73 |
+
default_share_always_show_hf_logout_btn = True
|
74 |
+
default_share_always_show_accordion = False
|
75 |
+
|
76 |
+
|
77 |
+
def process_image_check(path_input):
|
78 |
+
if path_input is None:
|
79 |
+
raise gr.Error(
|
80 |
+
"Missing image in the first pane: upload a file or use one from the gallery below."
|
81 |
+
)
|
82 |
+
|
83 |
|
84 |
def process_image(
|
85 |
pipe,
|
|
|
88 |
ensemble_size=default_image_ensemble_size,
|
89 |
processing_res=default_image_processing_res,
|
90 |
):
|
91 |
+
name_base, name_ext = os.path.splitext(os.path.basename(path_input))
|
92 |
+
print(f"Processing image {name_base}{name_ext}")
|
93 |
+
|
94 |
+
path_output_dir = tempfile.mkdtemp()
|
95 |
+
path_out_fp32 = os.path.join(path_output_dir, f"{name_base}_depth_fp32.npy")
|
96 |
+
path_out_16bit = os.path.join(path_output_dir, f"{name_base}_depth_16bit.png")
|
97 |
+
path_out_vis = os.path.join(path_output_dir, f"{name_base}_depth_colored.png")
|
98 |
+
|
99 |
input_image = Image.open(path_input)
|
100 |
|
101 |
pipe_out = pipe(
|
|
|
112 |
depth_colored = pipe_out.depth_colored
|
113 |
depth_16bit = (depth_pred * 65535.0).astype(np.uint16)
|
114 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
115 |
np.save(path_out_fp32, depth_pred)
|
116 |
Image.fromarray(depth_16bit).save(path_out_16bit, mode="I;16")
|
117 |
depth_colored.save(path_out_vis)
|
|
|
133 |
out_max_frames=default_video_out_max_frames,
|
134 |
progress=gr.Progress(),
|
135 |
):
|
136 |
+
if path_input is None:
|
137 |
+
raise gr.Error(
|
138 |
+
"Missing video in the first pane: upload a file or use one from the gallery below."
|
139 |
+
)
|
140 |
|
141 |
+
name_base, name_ext = os.path.splitext(os.path.basename(path_input))
|
142 |
+
print(f"Processing video {name_base}{name_ext}")
|
143 |
+
|
144 |
+
path_output_dir = tempfile.mkdtemp()
|
145 |
path_out_vis = os.path.join(path_output_dir, f"{name_base}_depth_colored.mp4")
|
146 |
path_out_16bit = os.path.join(path_output_dir, f"{name_base}_depth_16bit.zip")
|
147 |
|
|
|
241 |
frame_near=default_bas_frame_near,
|
242 |
frame_far=default_bas_frame_far,
|
243 |
):
|
244 |
+
if path_input is None:
|
245 |
+
raise gr.Error(
|
246 |
+
"Missing image in the first pane: upload a file or use one from the gallery below."
|
247 |
+
)
|
248 |
+
|
249 |
if plane_near >= plane_far:
|
250 |
raise gr.Error("NEAR plane must have a value smaller than the FAR plane")
|
251 |
|
|
|
|
|
252 |
name_base, name_ext = os.path.splitext(os.path.basename(path_input))
|
253 |
+
print(f"Processing bas-relief {name_base}{name_ext}")
|
254 |
+
|
255 |
+
path_output_dir = tempfile.mkdtemp()
|
256 |
|
257 |
input_image = Image.open(path_input)
|
258 |
|
|
|
296 |
path_glb, path_stl = extrude_depth_3d(
|
297 |
image_rgb_new,
|
298 |
image_depth_new,
|
299 |
+
output_model_scale=(
|
300 |
+
size_longest_cm * 10
|
301 |
+
if output_model_scale is None
|
302 |
+
else output_model_scale
|
303 |
+
),
|
304 |
filter_size=filter_size,
|
305 |
coef_near=plane_near,
|
306 |
coef_far=plane_far,
|
|
|
319 |
256, filter_size, vertex_colors=False, scene_lights=True, output_model_scale=1
|
320 |
)
|
321 |
path_files_glb, path_files_stl = _process_3d(
|
322 |
+
size_longest_px,
|
323 |
+
filter_size,
|
324 |
+
vertex_colors=True,
|
325 |
+
scene_lights=False,
|
326 |
+
prepare_for_3d_printing=True,
|
327 |
)
|
328 |
|
329 |
return path_viewer_glb, [path_files_glb, path_files_stl]
|
330 |
|
331 |
|
332 |
+
def run_demo_server(pipe, hf_writer=None):
|
333 |
process_pipe_image = spaces.GPU(functools.partial(process_image, pipe))
|
334 |
+
process_pipe_video = spaces.GPU(
|
335 |
+
functools.partial(process_video, pipe), duration=120
|
336 |
+
)
|
337 |
process_pipe_bas = spaces.GPU(functools.partial(process_bas, pipe))
|
|
|
338 |
|
339 |
gradio_theme = gr.themes.Default()
|
340 |
|
|
|
368 |
text-align: center;
|
369 |
display: block;
|
370 |
}
|
371 |
+
.md_feedback li {
|
372 |
+
margin-bottom: 0px !important;
|
373 |
+
}
|
374 |
""",
|
375 |
head="""
|
376 |
<script async src="https://www.googletagmanager.com/gtag/js?id=G-1FWSVCGZTG"></script>
|
|
|
382 |
</script>
|
383 |
""",
|
384 |
) as demo:
|
385 |
+
if hf_writer is not None:
|
386 |
+
print("Creating login button")
|
387 |
+
share_login_btn = gr.LoginButton(size="sm", scale=1, render=False)
|
388 |
+
print("Created login button")
|
389 |
+
share_login_btn.activate()
|
390 |
+
print("Activated login button")
|
391 |
+
|
392 |
gr.Markdown(
|
393 |
"""
|
394 |
# Marigold-LCM Depth Estimation
|
395 |
<p align="center">
|
396 |
+
<a title="Website" href="https://marigoldmonodepth.github.io/" target="_blank" rel="noopener noreferrer"
|
397 |
+
style="display: inline-block;">
|
398 |
<img src="https://www.obukhov.ai/img/badges/badge-website.svg">
|
399 |
</a>
|
400 |
+
<a title="arXiv" href="https://arxiv.org/abs/2312.02145" target="_blank" rel="noopener noreferrer"
|
401 |
+
style="display: inline-block;">
|
402 |
<img src="https://www.obukhov.ai/img/badges/badge-pdf.svg">
|
403 |
</a>
|
404 |
+
<a title="Github" href="https://github.com/prs-eth/marigold" target="_blank" rel="noopener noreferrer"
|
405 |
+
style="display: inline-block;">
|
406 |
+
<img src="https://img.shields.io/github/stars/prs-eth/marigold?label=GitHub%20%E2%98%85&logo=github&color=C8C"
|
407 |
+
alt="badge-github-stars">
|
408 |
</a>
|
409 |
+
<a title="Social" href="https://twitter.com/antonobukhov1" target="_blank" rel="noopener noreferrer"
|
410 |
+
style="display: inline-block;">
|
411 |
<img src="https://www.obukhov.ai/img/badges/badge-social.svg" alt="social">
|
412 |
</a>
|
413 |
</p>
|
414 |
<p align="justify">
|
415 |
+
Marigold-LCM is the fast version of Marigold, the state-of-the-art depth estimator for images in the
|
416 |
+
wild. It combines the power of the original Marigold 10-step estimator and the Latent Consistency
|
417 |
+
Models, delivering high-quality results in as little as <b>one step</b>. We provide three functions
|
418 |
+
in this demo: Image, Video, and Bas-relief 3D processing — <b>see the tabs below</b>. Upload your
|
419 |
+
content into the <b>first</b> pane, or click any of the <b>examples</b> below. Wait a second (for
|
420 |
+
images and 3D) or a minute (for videos), and interact with the result in the <b>second</b> pane. To
|
421 |
+
avoid queuing, fork the demo into your profile.
|
422 |
+
<a href="https://huggingface.co/spaces/prs-eth/marigold">
|
423 |
+
The original Marigold demo is also available
|
424 |
+
</a>.
|
425 |
</p>
|
426 |
"""
|
427 |
)
|
428 |
|
429 |
+
def get_share_instructions(is_full):
|
430 |
+
out = (
|
431 |
+
"### Help us improve Marigold! If the output is not what you expected, "
|
432 |
+
"you can help us by sharing it with us privately.\n"
|
433 |
+
)
|
434 |
+
if is_full:
|
435 |
+
out += (
|
436 |
+
"1. Sign into your Hugging Face account using the button below.\n"
|
437 |
+
"1. Signing in may reset the demo and results; in that case, process the image again.\n"
|
438 |
+
)
|
439 |
+
out += "1. Review and agree to the terms of usage and enter an optional message to us.\n"
|
440 |
+
out += "1. Click the 'Share' button to submit the image to us privately.\n"
|
441 |
+
return out
|
442 |
+
|
443 |
+
def get_share_conditioned_on_login(profile: gr.OAuthProfile | None):
|
444 |
+
state_logged_out = profile is None
|
445 |
+
return get_share_instructions(is_full=state_logged_out), gr.Button(
|
446 |
+
visible=(state_logged_out or default_share_always_show_hf_logout_btn)
|
447 |
+
)
|
448 |
+
|
449 |
with gr.Tabs(elem_classes=["tabs"]):
|
450 |
with gr.Tab("Image"):
|
451 |
with gr.Row():
|
|
|
497 |
elem_id="download",
|
498 |
interactive=False,
|
499 |
)
|
500 |
+
|
501 |
+
if hf_writer is not None:
|
502 |
+
with gr.Accordion(
|
503 |
+
"Feedback",
|
504 |
+
open=False,
|
505 |
+
visible=default_share_always_show_accordion,
|
506 |
+
) as share_box:
|
507 |
+
share_instructions = gr.Markdown(
|
508 |
+
get_share_instructions(is_full=True),
|
509 |
+
elem_classes="md_feedback",
|
510 |
+
)
|
511 |
+
share_transfer_of_rights = gr.Checkbox(
|
512 |
+
label="(Optional) I own or hold necessary rights to the submitted image. By "
|
513 |
+
"checking this box, I grant an irrevocable, non-exclusive, transferable, "
|
514 |
+
"royalty-free, worldwide license to use the uploaded image, including for "
|
515 |
+
"publishing, reproducing, and model training. [transfer_of_rights]",
|
516 |
+
scale=1,
|
517 |
+
)
|
518 |
+
share_content_is_legal = gr.Checkbox(
|
519 |
+
label="By checking this box, I acknowledge that my uploaded content is legal and "
|
520 |
+
"safe, and that I am solely responsible for ensuring it complies with all "
|
521 |
+
"applicable laws and regulations. Additionally, I am aware that my Hugging Face "
|
522 |
+
"username is collected. [content_is_legal]",
|
523 |
+
scale=1,
|
524 |
+
)
|
525 |
+
share_reason = gr.Textbox(
|
526 |
+
label="(Optional) Reason for feedback",
|
527 |
+
max_lines=1,
|
528 |
+
interactive=True,
|
529 |
+
)
|
530 |
+
with gr.Row():
|
531 |
+
share_login_btn.render()
|
532 |
+
share_share_btn = gr.Button(
|
533 |
+
"Share", variant="stop", scale=1
|
534 |
+
)
|
535 |
+
|
536 |
gr.Examples(
|
537 |
fn=process_pipe_image,
|
538 |
examples=[
|
|
|
612 |
"""
|
613 |
<p align="justify">
|
614 |
This part of the demo uses Marigold-LCM to create a bas-relief model.
|
615 |
+
The models are watertight, with correct normals, and exported in the STL format, which makes
|
616 |
+
them <b>3D-printable</b>.
|
617 |
</p>
|
618 |
""",
|
619 |
)
|
|
|
624 |
type="filepath",
|
625 |
)
|
626 |
with gr.Row():
|
627 |
+
bas_submit_btn = gr.Button(
|
628 |
+
value="Create 3D", variant="primary"
|
629 |
+
)
|
630 |
bas_reset_btn = gr.Button(value="Reset")
|
631 |
with gr.Accordion("3D printing demo: Main options", open=True):
|
632 |
bas_plane_near = gr.Slider(
|
|
|
650 |
step=1,
|
651 |
value=default_bas_embossing,
|
652 |
)
|
653 |
+
with gr.Accordion(
|
654 |
+
"3D printing demo: Advanced options", open=False
|
655 |
+
):
|
656 |
bas_denoise_steps = gr.Slider(
|
657 |
label="Number of denoising steps",
|
658 |
minimum=1,
|
|
|
797 |
cache_examples=True,
|
798 |
)
|
799 |
|
800 |
+
### Image tab
|
801 |
+
|
802 |
+
if hf_writer is not None:
|
803 |
+
image_submit_btn.click(
|
804 |
+
fn=process_image_check,
|
805 |
+
inputs=image_input,
|
806 |
+
outputs=None,
|
807 |
+
preprocess=False,
|
808 |
+
queue=False,
|
809 |
+
).success(
|
810 |
+
get_share_conditioned_on_login,
|
811 |
+
None,
|
812 |
+
[share_instructions, share_login_btn],
|
813 |
+
queue=False,
|
814 |
+
).then(
|
815 |
+
lambda: (
|
816 |
+
gr.Button(value="Share", interactive=True),
|
817 |
+
gr.Accordion(visible=True),
|
818 |
+
False,
|
819 |
+
False,
|
820 |
+
"",
|
821 |
+
),
|
822 |
+
None,
|
823 |
+
[
|
824 |
+
share_share_btn,
|
825 |
+
share_box,
|
826 |
+
share_transfer_of_rights,
|
827 |
+
share_content_is_legal,
|
828 |
+
share_reason,
|
829 |
+
],
|
830 |
+
queue=False,
|
831 |
+
).then(
|
832 |
+
fn=process_pipe_image,
|
833 |
+
inputs=[
|
834 |
+
image_input,
|
835 |
+
image_denoise_steps,
|
836 |
+
image_ensemble_size,
|
837 |
+
image_processing_res,
|
838 |
+
],
|
839 |
+
outputs=[image_output_slider, image_output_files],
|
840 |
+
concurrency_limit=1,
|
841 |
+
)
|
842 |
+
else:
|
843 |
+
image_submit_btn.click(
|
844 |
+
fn=process_image_check,
|
845 |
+
inputs=image_input,
|
846 |
+
outputs=None,
|
847 |
+
preprocess=False,
|
848 |
+
queue=False,
|
849 |
+
).success(
|
850 |
+
fn=process_pipe_image,
|
851 |
+
inputs=[
|
852 |
+
image_input,
|
853 |
+
image_denoise_steps,
|
854 |
+
image_ensemble_size,
|
855 |
+
image_processing_res,
|
856 |
+
],
|
857 |
+
outputs=[image_output_slider, image_output_files],
|
858 |
+
concurrency_limit=1,
|
859 |
+
)
|
860 |
|
861 |
image_reset_btn.click(
|
862 |
fn=lambda: (
|
|
|
876 |
image_denoise_steps,
|
877 |
image_processing_res,
|
878 |
],
|
879 |
+
queue=False,
|
880 |
)
|
881 |
|
882 |
+
if hf_writer is not None:
|
883 |
+
image_reset_btn.click(
|
884 |
+
fn=lambda: (
|
885 |
+
gr.Button(value="Share", interactive=True),
|
886 |
+
gr.Accordion(visible=default_share_always_show_accordion),
|
887 |
+
),
|
888 |
+
inputs=[],
|
889 |
+
outputs=[
|
890 |
+
share_share_btn,
|
891 |
+
share_box,
|
892 |
+
],
|
893 |
+
queue=False,
|
894 |
+
)
|
895 |
+
|
896 |
+
### Share functionality
|
897 |
+
|
898 |
+
if hf_writer is not None:
|
899 |
+
share_components = [
|
900 |
+
image_input,
|
901 |
+
image_denoise_steps,
|
902 |
+
image_ensemble_size,
|
903 |
+
image_processing_res,
|
904 |
+
image_output_slider,
|
905 |
+
share_content_is_legal,
|
906 |
+
share_transfer_of_rights,
|
907 |
+
share_reason,
|
908 |
+
]
|
909 |
+
|
910 |
+
hf_writer.setup(share_components, "shared_data")
|
911 |
+
share_callback = FlagMethod(hf_writer, "Share", "", visual_feedback=True)
|
912 |
+
|
913 |
+
def share_precheck(
|
914 |
+
hf_content_is_legal,
|
915 |
+
image_output_slider,
|
916 |
+
profile: gr.OAuthProfile | None,
|
917 |
+
):
|
918 |
+
if profile is None:
|
919 |
+
raise gr.Error(
|
920 |
+
"Log into the Space with your Hugging Face account first."
|
921 |
+
)
|
922 |
+
if image_output_slider is None or image_output_slider[0] is None:
|
923 |
+
raise gr.Error("No output detected; process the image first.")
|
924 |
+
if not hf_content_is_legal:
|
925 |
+
raise gr.Error(
|
926 |
+
"You must consent that the uploaded content is legal."
|
927 |
+
)
|
928 |
+
return gr.Button(value="Sharing in progress", interactive=False)
|
929 |
+
|
930 |
+
share_share_btn.click(
|
931 |
+
share_precheck,
|
932 |
+
[share_content_is_legal, image_output_slider],
|
933 |
+
share_share_btn,
|
934 |
+
preprocess=False,
|
935 |
+
queue=False,
|
936 |
+
).success(
|
937 |
+
share_callback,
|
938 |
+
inputs=share_components,
|
939 |
+
outputs=share_share_btn,
|
940 |
+
preprocess=False,
|
941 |
+
queue=False,
|
942 |
+
)
|
943 |
+
|
944 |
+
### Video tab
|
945 |
+
|
946 |
video_submit_btn.click(
|
947 |
fn=process_pipe_video,
|
948 |
inputs=[video_input],
|
|
|
957 |
concurrency_limit=1,
|
958 |
)
|
959 |
|
960 |
+
### Bas-relief tab
|
961 |
+
|
962 |
bas_submit_btn.click(
|
963 |
fn=process_pipe_bas,
|
964 |
inputs=[
|
|
|
1021 |
concurrency_limit=1,
|
1022 |
)
|
1023 |
|
1024 |
+
### Server launch
|
1025 |
+
|
1026 |
demo.queue(
|
1027 |
api_open=False,
|
1028 |
).launch(
|
|
|
1033 |
|
1034 |
def main():
|
1035 |
CHECKPOINT = "prs-eth/marigold-lcm-v1-0"
|
1036 |
+
CROWD_DATA = "crowddata-marigold-lcm-v1-0-space-v1-0"
|
1037 |
|
1038 |
if "HF_TOKEN_LOGIN" in os.environ:
|
1039 |
login(token=os.environ["HF_TOKEN_LOGIN"])
|
|
|
1049 |
pass # run without xformers
|
1050 |
|
1051 |
pipe = pipe.to(device)
|
1052 |
+
|
1053 |
+
hf_writer = None
|
1054 |
+
if "HF_TOKEN_LOGIN" in os.environ:
|
1055 |
+
hf_writer = HuggingFaceDatasetSaver(
|
1056 |
+
os.getenv("HF_TOKEN_LOGIN"),
|
1057 |
+
CROWD_DATA,
|
1058 |
+
private=True,
|
1059 |
+
info_filename="dataset_info.json",
|
1060 |
+
separate_dirs=True,
|
1061 |
+
)
|
1062 |
+
|
1063 |
+
run_demo_server(pipe, hf_writer)
|
1064 |
|
1065 |
|
1066 |
if __name__ == "__main__":
|
extrude.py
CHANGED
@@ -336,7 +336,9 @@ def extrude_depth_3d(
|
|
336 |
mesh.apply_scale(scaling_factor)
|
337 |
|
338 |
if prepare_for_3d_printing:
|
339 |
-
rotation_mat = trimesh.transformations.rotation_matrix(
|
|
|
|
|
340 |
mesh.apply_transform(rotation_mat)
|
341 |
|
342 |
path_out_base = os.path.splitext(path_depth)[0].replace("_16bit", "")
|
|
|
336 |
mesh.apply_scale(scaling_factor)
|
337 |
|
338 |
if prepare_for_3d_printing:
|
339 |
+
rotation_mat = trimesh.transformations.rotation_matrix(
|
340 |
+
np.radians(90), [-1, 0, 0]
|
341 |
+
)
|
342 |
mesh.apply_transform(rotation_mat)
|
343 |
|
344 |
path_out_base = os.path.splitext(path_depth)[0].replace("_16bit", "")
|
flagging.py
ADDED
@@ -0,0 +1,387 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from __future__ import annotations
|
2 |
+
|
3 |
+
import csv
|
4 |
+
import json
|
5 |
+
import time
|
6 |
+
import uuid
|
7 |
+
from abc import ABC, abstractmethod
|
8 |
+
from collections import OrderedDict
|
9 |
+
from datetime import datetime, timezone
|
10 |
+
from pathlib import Path
|
11 |
+
from typing import TYPE_CHECKING, Any
|
12 |
+
|
13 |
+
import filelock
|
14 |
+
import huggingface_hub
|
15 |
+
from gradio_client import utils as client_utils
|
16 |
+
from gradio_client.documentation import document
|
17 |
+
|
18 |
+
import gradio as gr
|
19 |
+
from gradio import utils
|
20 |
+
|
21 |
+
if TYPE_CHECKING:
|
22 |
+
from gradio.components import Component
|
23 |
+
|
24 |
+
|
25 |
+
class FlaggingCallback(ABC):
|
26 |
+
"""
|
27 |
+
An abstract class for defining the methods that any FlaggingCallback should have.
|
28 |
+
"""
|
29 |
+
|
30 |
+
@abstractmethod
|
31 |
+
def setup(self, components: list[Component], flagging_dir: str):
|
32 |
+
"""
|
33 |
+
This method should be overridden and ensure that everything is set up correctly for flag().
|
34 |
+
This method gets called once at the beginning of the Interface.launch() method.
|
35 |
+
Parameters:
|
36 |
+
components: Set of components that will provide flagged data.
|
37 |
+
flagging_dir: A string, typically containing the path to the directory where the flagging file should be stored (provided as an argument to Interface.__init__()).
|
38 |
+
"""
|
39 |
+
pass
|
40 |
+
|
41 |
+
@abstractmethod
|
42 |
+
def flag(
|
43 |
+
self,
|
44 |
+
flag_data: list[Any],
|
45 |
+
flag_option: str = "",
|
46 |
+
username: str | None = None,
|
47 |
+
) -> int:
|
48 |
+
"""
|
49 |
+
This method should be overridden by the FlaggingCallback subclass and may contain optional additional arguments.
|
50 |
+
This gets called every time the <flag> button is pressed.
|
51 |
+
Parameters:
|
52 |
+
interface: The Interface object that is being used to launch the flagging interface.
|
53 |
+
flag_data: The data to be flagged.
|
54 |
+
flag_option (optional): In the case that flagging_options are provided, the flag option that is being used.
|
55 |
+
username (optional): The username of the user that is flagging the data, if logged in.
|
56 |
+
Returns:
|
57 |
+
(int) The total number of samples that have been flagged.
|
58 |
+
"""
|
59 |
+
pass
|
60 |
+
|
61 |
+
|
62 |
+
@document()
|
63 |
+
class HuggingFaceDatasetSaver(FlaggingCallback):
|
64 |
+
"""
|
65 |
+
A callback that saves each flagged sample (both the input and output data) to a HuggingFace dataset.
|
66 |
+
|
67 |
+
Example:
|
68 |
+
import gradio as gr
|
69 |
+
hf_writer = gr.HuggingFaceDatasetSaver(HF_API_TOKEN, "image-classification-mistakes")
|
70 |
+
def image_classifier(inp):
|
71 |
+
return {'cat': 0.3, 'dog': 0.7}
|
72 |
+
demo = gr.Interface(fn=image_classifier, inputs="image", outputs="label",
|
73 |
+
allow_flagging="manual", flagging_callback=hf_writer)
|
74 |
+
Guides: using-flagging
|
75 |
+
"""
|
76 |
+
|
77 |
+
def __init__(
|
78 |
+
self,
|
79 |
+
hf_token: str,
|
80 |
+
dataset_name: str,
|
81 |
+
private: bool = False,
|
82 |
+
info_filename: str = "dataset_info.json",
|
83 |
+
separate_dirs: bool = False,
|
84 |
+
):
|
85 |
+
"""
|
86 |
+
Parameters:
|
87 |
+
hf_token: The HuggingFace token to use to create (and write the flagged sample to) the HuggingFace dataset (defaults to the registered one).
|
88 |
+
dataset_name: The repo_id of the dataset to save the data to, e.g. "image-classifier-1" or "username/image-classifier-1".
|
89 |
+
private: Whether the dataset should be private (defaults to False).
|
90 |
+
info_filename: The name of the file to save the dataset info (defaults to "dataset_infos.json").
|
91 |
+
separate_dirs: If True, each flagged item will be saved in a separate directory. This makes the flagging more robust to concurrent editing, but may be less convenient to use.
|
92 |
+
"""
|
93 |
+
self.hf_token = hf_token
|
94 |
+
self.dataset_id = dataset_name # TODO: rename parameter (but ensure backward compatibility somehow)
|
95 |
+
self.dataset_private = private
|
96 |
+
self.info_filename = info_filename
|
97 |
+
self.separate_dirs = separate_dirs
|
98 |
+
|
99 |
+
def setup(self, components: list[Component], flagging_dir: str):
|
100 |
+
"""
|
101 |
+
Params:
|
102 |
+
flagging_dir (str): local directory where the dataset is cloned,
|
103 |
+
updated, and pushed from.
|
104 |
+
"""
|
105 |
+
# Setup dataset on the Hub
|
106 |
+
self.dataset_id = huggingface_hub.create_repo(
|
107 |
+
repo_id=self.dataset_id,
|
108 |
+
token=self.hf_token,
|
109 |
+
private=self.dataset_private,
|
110 |
+
repo_type="dataset",
|
111 |
+
exist_ok=True,
|
112 |
+
).repo_id
|
113 |
+
path_glob = "**/*.jsonl" if self.separate_dirs else "data.csv"
|
114 |
+
huggingface_hub.metadata_update(
|
115 |
+
repo_id=self.dataset_id,
|
116 |
+
repo_type="dataset",
|
117 |
+
metadata={
|
118 |
+
"configs": [
|
119 |
+
{
|
120 |
+
"config_name": "default",
|
121 |
+
"data_files": [{"split": "train", "path": path_glob}],
|
122 |
+
}
|
123 |
+
]
|
124 |
+
},
|
125 |
+
overwrite=True,
|
126 |
+
token=self.hf_token,
|
127 |
+
)
|
128 |
+
|
129 |
+
# Setup flagging dir
|
130 |
+
self.components = components
|
131 |
+
self.dataset_dir = (
|
132 |
+
Path(flagging_dir).absolute() / self.dataset_id.split("/")[-1]
|
133 |
+
)
|
134 |
+
self.dataset_dir.mkdir(parents=True, exist_ok=True)
|
135 |
+
self.infos_file = self.dataset_dir / self.info_filename
|
136 |
+
|
137 |
+
# Download remote files to local
|
138 |
+
remote_files = [self.info_filename]
|
139 |
+
if not self.separate_dirs:
|
140 |
+
# No separate dirs => means all data is in the same CSV file => download it to get its current content
|
141 |
+
remote_files.append("data.csv")
|
142 |
+
|
143 |
+
for filename in remote_files:
|
144 |
+
try:
|
145 |
+
huggingface_hub.hf_hub_download(
|
146 |
+
repo_id=self.dataset_id,
|
147 |
+
repo_type="dataset",
|
148 |
+
filename=filename,
|
149 |
+
local_dir=self.dataset_dir,
|
150 |
+
token=self.hf_token,
|
151 |
+
)
|
152 |
+
except huggingface_hub.utils.EntryNotFoundError:
|
153 |
+
pass
|
154 |
+
|
155 |
+
def flag(
|
156 |
+
self,
|
157 |
+
flag_data: list[Any],
|
158 |
+
flag_option: str = "",
|
159 |
+
username: str | None = None,
|
160 |
+
) -> int:
|
161 |
+
if self.separate_dirs:
|
162 |
+
# JSONL files to support dataset preview on the Hub
|
163 |
+
current_utc_time = datetime.now(timezone.utc)
|
164 |
+
iso_format_without_microseconds = current_utc_time.strftime(
|
165 |
+
"%Y-%m-%dT%H:%M:%S"
|
166 |
+
)
|
167 |
+
milliseconds = int(current_utc_time.microsecond / 1000)
|
168 |
+
unique_id = f"{iso_format_without_microseconds}.{milliseconds:03}Z"
|
169 |
+
if username not in (None, ""):
|
170 |
+
unique_id += f"_U_{username}"
|
171 |
+
else:
|
172 |
+
unique_id += f"_{str(uuid.uuid4())[:8]}"
|
173 |
+
components_dir = self.dataset_dir / unique_id
|
174 |
+
data_file = components_dir / "metadata.jsonl"
|
175 |
+
path_in_repo = unique_id # upload in sub folder (safer for concurrency)
|
176 |
+
else:
|
177 |
+
# Unique CSV file
|
178 |
+
components_dir = self.dataset_dir
|
179 |
+
data_file = components_dir / "data.csv"
|
180 |
+
path_in_repo = None # upload at root level
|
181 |
+
|
182 |
+
return self._flag_in_dir(
|
183 |
+
data_file=data_file,
|
184 |
+
components_dir=components_dir,
|
185 |
+
path_in_repo=path_in_repo,
|
186 |
+
flag_data=flag_data,
|
187 |
+
flag_option=flag_option,
|
188 |
+
username=username or "",
|
189 |
+
)
|
190 |
+
|
191 |
+
def _flag_in_dir(
|
192 |
+
self,
|
193 |
+
data_file: Path,
|
194 |
+
components_dir: Path,
|
195 |
+
path_in_repo: str | None,
|
196 |
+
flag_data: list[Any],
|
197 |
+
flag_option: str = "",
|
198 |
+
username: str = "",
|
199 |
+
) -> int:
|
200 |
+
# Deserialize components (write images/audio to files)
|
201 |
+
features, row = self._deserialize_components(
|
202 |
+
components_dir, flag_data, flag_option, username
|
203 |
+
)
|
204 |
+
|
205 |
+
# Write generic info to dataset_infos.json + upload
|
206 |
+
with filelock.FileLock(str(self.infos_file) + ".lock"):
|
207 |
+
if not self.infos_file.exists():
|
208 |
+
self.infos_file.write_text(
|
209 |
+
json.dumps({"flagged": {"features": features}})
|
210 |
+
)
|
211 |
+
|
212 |
+
huggingface_hub.upload_file(
|
213 |
+
repo_id=self.dataset_id,
|
214 |
+
repo_type="dataset",
|
215 |
+
token=self.hf_token,
|
216 |
+
path_in_repo=self.infos_file.name,
|
217 |
+
path_or_fileobj=self.infos_file,
|
218 |
+
)
|
219 |
+
|
220 |
+
headers = list(features.keys())
|
221 |
+
|
222 |
+
if not self.separate_dirs:
|
223 |
+
with filelock.FileLock(components_dir / ".lock"):
|
224 |
+
sample_nb = self._save_as_csv(data_file, headers=headers, row=row)
|
225 |
+
sample_name = str(sample_nb)
|
226 |
+
huggingface_hub.upload_folder(
|
227 |
+
repo_id=self.dataset_id,
|
228 |
+
repo_type="dataset",
|
229 |
+
commit_message=f"Flagged sample #{sample_name}",
|
230 |
+
path_in_repo=path_in_repo,
|
231 |
+
ignore_patterns="*.lock",
|
232 |
+
folder_path=components_dir,
|
233 |
+
token=self.hf_token,
|
234 |
+
)
|
235 |
+
else:
|
236 |
+
sample_name = self._save_as_jsonl(data_file, headers=headers, row=row)
|
237 |
+
sample_nb = len(
|
238 |
+
[path for path in self.dataset_dir.iterdir() if path.is_dir()]
|
239 |
+
)
|
240 |
+
huggingface_hub.upload_folder(
|
241 |
+
repo_id=self.dataset_id,
|
242 |
+
repo_type="dataset",
|
243 |
+
commit_message=f"Flagged sample #{sample_name}",
|
244 |
+
path_in_repo=path_in_repo,
|
245 |
+
ignore_patterns="*.lock",
|
246 |
+
folder_path=components_dir,
|
247 |
+
token=self.hf_token,
|
248 |
+
)
|
249 |
+
|
250 |
+
return sample_nb
|
251 |
+
|
252 |
+
@staticmethod
|
253 |
+
def _save_as_csv(data_file: Path, headers: list[str], row: list[Any]) -> int:
|
254 |
+
"""Save data as CSV and return the sample name (row number)."""
|
255 |
+
is_new = not data_file.exists()
|
256 |
+
|
257 |
+
with data_file.open("a", newline="", encoding="utf-8") as csvfile:
|
258 |
+
writer = csv.writer(csvfile)
|
259 |
+
|
260 |
+
# Write CSV headers if new file
|
261 |
+
if is_new:
|
262 |
+
writer.writerow(utils.sanitize_list_for_csv(headers))
|
263 |
+
|
264 |
+
# Write CSV row for flagged sample
|
265 |
+
writer.writerow(utils.sanitize_list_for_csv(row))
|
266 |
+
|
267 |
+
with data_file.open(encoding="utf-8") as csvfile:
|
268 |
+
return sum(1 for _ in csv.reader(csvfile)) - 1
|
269 |
+
|
270 |
+
@staticmethod
|
271 |
+
def _save_as_jsonl(data_file: Path, headers: list[str], row: list[Any]) -> str:
|
272 |
+
"""Save data as JSONL and return the sample name (uuid)."""
|
273 |
+
Path.mkdir(data_file.parent, parents=True, exist_ok=True)
|
274 |
+
with open(data_file, "w") as f:
|
275 |
+
json.dump(dict(zip(headers, row)), f)
|
276 |
+
return data_file.parent.name
|
277 |
+
|
278 |
+
def _deserialize_components(
|
279 |
+
self,
|
280 |
+
data_dir: Path,
|
281 |
+
flag_data: list[Any],
|
282 |
+
flag_option: str = "",
|
283 |
+
username: str = "",
|
284 |
+
) -> tuple[dict[Any, Any], list[Any]]:
|
285 |
+
"""Deserialize components and return the corresponding row for the flagged sample.
|
286 |
+
|
287 |
+
Images/audio are saved to disk as individual files.
|
288 |
+
"""
|
289 |
+
# Components that can have a preview on dataset repos
|
290 |
+
file_preview_types = {gr.Audio: "Audio", gr.Image: "Image"}
|
291 |
+
|
292 |
+
# Generate the row corresponding to the flagged sample
|
293 |
+
features = OrderedDict()
|
294 |
+
row = []
|
295 |
+
for component, sample in zip(self.components, flag_data):
|
296 |
+
# Get deserialized object (will save sample to disk if applicable -file, audio, image,...-)
|
297 |
+
label = component.label or ""
|
298 |
+
save_dir = data_dir / client_utils.strip_invalid_filename_characters(label)
|
299 |
+
save_dir.mkdir(exist_ok=True, parents=True)
|
300 |
+
deserialized = component.flag(sample, save_dir)
|
301 |
+
|
302 |
+
# Base component .flag method returns JSON; extract path from it when it is FileData
|
303 |
+
if component.data_model:
|
304 |
+
data = component.data_model.from_json(json.loads(deserialized))
|
305 |
+
if component.data_model == gr.data_classes.FileData:
|
306 |
+
deserialized = data.path
|
307 |
+
|
308 |
+
# Add deserialized object to row
|
309 |
+
features[label] = {"dtype": "string", "_type": "Value"}
|
310 |
+
try:
|
311 |
+
deserialized_path = Path(deserialized)
|
312 |
+
if not deserialized_path.exists():
|
313 |
+
raise FileNotFoundError(f"File {deserialized} not found")
|
314 |
+
row.append(str(deserialized_path.relative_to(self.dataset_dir)))
|
315 |
+
except (FileNotFoundError, TypeError, ValueError):
|
316 |
+
deserialized = "" if deserialized is None else str(deserialized)
|
317 |
+
row.append(deserialized)
|
318 |
+
|
319 |
+
# If component is eligible for a preview, add the URL of the file
|
320 |
+
# Be mindful that images and audio can be None
|
321 |
+
if isinstance(component, tuple(file_preview_types)): # type: ignore
|
322 |
+
for _component, _type in file_preview_types.items():
|
323 |
+
if isinstance(component, _component):
|
324 |
+
features[label + " file"] = {"_type": _type}
|
325 |
+
break
|
326 |
+
if deserialized:
|
327 |
+
path_in_repo = str( # returned filepath is absolute, we want it relative to compute URL
|
328 |
+
Path(deserialized).relative_to(self.dataset_dir)
|
329 |
+
).replace(
|
330 |
+
"\\", "/"
|
331 |
+
)
|
332 |
+
row.append(
|
333 |
+
huggingface_hub.hf_hub_url(
|
334 |
+
repo_id=self.dataset_id,
|
335 |
+
filename=path_in_repo,
|
336 |
+
repo_type="dataset",
|
337 |
+
)
|
338 |
+
)
|
339 |
+
else:
|
340 |
+
row.append("")
|
341 |
+
features["flag"] = {"dtype": "string", "_type": "Value"}
|
342 |
+
features["username"] = {"dtype": "string", "_type": "Value"}
|
343 |
+
row.append(flag_option)
|
344 |
+
row.append(username)
|
345 |
+
return features, row
|
346 |
+
|
347 |
+
|
348 |
+
class FlagMethod:
|
349 |
+
"""
|
350 |
+
Helper class that contains the flagging options and calls the flagging method. Also
|
351 |
+
provides visual feedback to the user when flag is clicked.
|
352 |
+
"""
|
353 |
+
|
354 |
+
def __init__(
|
355 |
+
self,
|
356 |
+
flagging_callback: FlaggingCallback,
|
357 |
+
label: str,
|
358 |
+
value: str,
|
359 |
+
visual_feedback: bool = True,
|
360 |
+
):
|
361 |
+
self.flagging_callback = flagging_callback
|
362 |
+
self.label = label
|
363 |
+
self.value = value
|
364 |
+
self.__name__ = "Flag"
|
365 |
+
self.visual_feedback = visual_feedback
|
366 |
+
|
367 |
+
def __call__(
|
368 |
+
self,
|
369 |
+
request: gr.Request,
|
370 |
+
profile: gr.OAuthProfile | None,
|
371 |
+
*flag_data,
|
372 |
+
):
|
373 |
+
username = None
|
374 |
+
if profile is not None:
|
375 |
+
username = profile.username
|
376 |
+
try:
|
377 |
+
self.flagging_callback.flag(
|
378 |
+
list(flag_data), flag_option=self.value, username=username
|
379 |
+
)
|
380 |
+
except Exception as e:
|
381 |
+
print(f"Error while sharing: {e}")
|
382 |
+
if self.visual_feedback:
|
383 |
+
return gr.Button(value="Sharing error", interactive=False)
|
384 |
+
if not self.visual_feedback:
|
385 |
+
return
|
386 |
+
time.sleep(0.8) # to provide enough time for the user to observe button change
|
387 |
+
return gr.Button(value="Sharing complete", interactive=False)
|
marigold_depth_estimation_lcm.py
CHANGED
@@ -391,7 +391,9 @@ class MarigoldDepthConsistencyPipeline(DiffusionPipeline):
|
|
391 |
).sample # [B, 4, h, w]
|
392 |
|
393 |
# compute the previous noisy sample x_t -> x_t-1
|
394 |
-
depth_latent = self.scheduler.step(
|
|
|
|
|
395 |
|
396 |
depth = self._decode_depth(depth_latent)
|
397 |
|
|
|
391 |
).sample # [B, 4, h, w]
|
392 |
|
393 |
# compute the previous noisy sample x_t -> x_t-1
|
394 |
+
depth_latent = self.scheduler.step(
|
395 |
+
noise_pred, t, depth_latent, generator=rng
|
396 |
+
).prev_sample
|
397 |
|
398 |
depth = self._decode_depth(depth_latent)
|
399 |
|
requirements.txt
CHANGED
@@ -1,16 +1,16 @@
|
|
1 |
gradio==4.21.0
|
2 |
-
gradio-imageslider==0.0.
|
3 |
pygltflib==1.16.1
|
4 |
trimesh==4.0.5
|
5 |
imageio
|
6 |
imageio-ffmpeg
|
7 |
Pillow
|
8 |
|
9 |
-
spaces
|
10 |
-
accelerate
|
11 |
diffusers==0.27.2
|
12 |
matplotlib==3.8.2
|
13 |
scipy==1.11.4
|
14 |
torch==2.0.1
|
15 |
-
transformers
|
16 |
-
xformers
|
|
|
1 |
gradio==4.21.0
|
2 |
+
gradio-imageslider==0.0.18
|
3 |
pygltflib==1.16.1
|
4 |
trimesh==4.0.5
|
5 |
imageio
|
6 |
imageio-ffmpeg
|
7 |
Pillow
|
8 |
|
9 |
+
spaces==0.25.0
|
10 |
+
accelerate==0.25.0
|
11 |
diffusers==0.27.2
|
12 |
matplotlib==3.8.2
|
13 |
scipy==1.11.4
|
14 |
torch==2.0.1
|
15 |
+
transformers==4.36.1
|
16 |
+
xformers==0.0.21
|