asofter commited on
Commit
ca9549b
1 Parent(s): 91df4d6

* upgrade version of llm-guard with new features

Browse files
Files changed (6) hide show
  1. Dockerfile +0 -1
  2. app.py +0 -4
  3. output.py +137 -8
  4. prompt.py +147 -2
  5. prompt_text.txt +9 -9
  6. requirements.txt +2 -1
Dockerfile CHANGED
@@ -12,7 +12,6 @@ COPY ./requirements.txt /app/requirements.txt
12
 
13
  RUN pip install --upgrade pip
14
  RUN pip install -r requirements.txt
15
- RUN python -m spacy download en_core_web_trf
16
 
17
  EXPOSE 7860
18
 
 
12
 
13
  RUN pip install --upgrade pip
14
  RUN pip install -r requirements.txt
 
15
 
16
  EXPOSE 7860
17
 
app.py CHANGED
@@ -4,7 +4,6 @@ import traceback
4
  from datetime import timedelta
5
 
6
  import pandas as pd
7
- import spacy
8
  import streamlit as st
9
  from output import init_settings as init_output_settings
10
  from output import scan as scan_output
@@ -13,9 +12,6 @@ from prompt import scan as scan_prompt
13
 
14
  from llm_guard.vault import Vault
15
 
16
- if not spacy.util.is_package("en_core_web_trf"):
17
- spacy.cli.download("en_core_web_trf")
18
-
19
  PROMPT = "prompt"
20
  OUTPUT = "output"
21
  vault = Vault()
 
4
  from datetime import timedelta
5
 
6
  import pandas as pd
 
7
  import streamlit as st
8
  from output import init_settings as init_output_settings
9
  from output import scan as scan_output
 
12
 
13
  from llm_guard.vault import Vault
14
 
 
 
 
15
  PROMPT = "prompt"
16
  OUTPUT = "output"
17
  vault = Vault()
output.py CHANGED
@@ -6,11 +6,14 @@ from streamlit_tags import st_tags
6
 
7
  from llm_guard.input_scanners.anonymize import default_entity_types
8
  from llm_guard.output_scanners import (
 
9
  BanSubstrings,
10
  BanTopics,
11
  Bias,
12
  Code,
13
  Deanonymize,
 
 
14
  MaliciousURLs,
15
  NoRefusal,
16
  Refutation,
@@ -18,6 +21,7 @@ from llm_guard.output_scanners import (
18
  Relevance,
19
  Sensitive,
20
  )
 
21
  from llm_guard.output_scanners.sentiment import Sentiment
22
  from llm_guard.output_scanners.toxicity import Toxicity
23
  from llm_guard.vault import Vault
@@ -32,6 +36,9 @@ def init_settings() -> (List, Dict):
32
  "Bias",
33
  "Code",
34
  "Deanonymize",
 
 
 
35
  "MaliciousURLs",
36
  "NoRefusal",
37
  "Refutation",
@@ -67,12 +74,14 @@ def init_settings() -> (List, Dict):
67
  st_bs_match_type = st.selectbox("Match type", ["str", "word"])
68
  st_bs_case_sensitive = st.checkbox("Case sensitive", value=False)
69
  st_bs_redact = st.checkbox("Redact", value=False)
 
70
 
71
  settings["BanSubstrings"] = {
72
  "substrings": st_bs_substrings,
73
  "match_type": st_bs_match_type,
74
  "case_sensitive": st_bs_case_sensitive,
75
  "redact": st_bs_redact,
 
76
  }
77
 
78
  if "BanTopics" in st_enabled_scanners:
@@ -85,7 +94,7 @@ def init_settings() -> (List, Dict):
85
  st_bt_topics = st_tags(
86
  label="List of topics",
87
  text="Type and press enter",
88
- value=["politics", "religion", "money", "crime"],
89
  suggestions=[],
90
  maxtags=30,
91
  key="bt_topics",
@@ -93,7 +102,7 @@ def init_settings() -> (List, Dict):
93
 
94
  st_bt_threshold = st.slider(
95
  label="Threshold",
96
- value=0.75,
97
  min_value=0.0,
98
  max_value=1.0,
99
  step=0.05,
@@ -137,6 +146,98 @@ def init_settings() -> (List, Dict):
137
 
138
  settings["Code"] = {"languages": st_cd_languages, "mode": st_cd_mode}
139
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
140
  if "MaliciousURLs" in st_enabled_scanners:
141
  st_murls_expander = st.sidebar.expander(
142
  "Malicious URLs",
@@ -231,14 +332,15 @@ def init_settings() -> (List, Dict):
231
  st_rele_threshold = st.slider(
232
  label="Threshold",
233
  value=0.5,
234
- min_value=-1.0,
235
  max_value=1.0,
236
  step=0.05,
237
  key="rele_threshold",
238
- help="The minimum cosine similarity (-1 to 1) between the prompt and output for the output to be considered relevant.",
239
  )
240
 
241
- settings["Relevance"] = {"threshold": st_rele_threshold}
 
 
242
 
243
  if "Sensitive" in st_enabled_scanners:
244
  st_sens_expander = st.sidebar.expander(
@@ -259,8 +361,21 @@ def init_settings() -> (List, Dict):
259
  st.caption(
260
  "Check all supported entities: https://microsoft.github.io/presidio/supported_entities/#list-of-supported-entities"
261
  )
 
 
 
 
 
 
 
 
 
262
 
263
- settings["Sensitive"] = {"entity_types": st_sens_entity_types}
 
 
 
 
264
 
265
  if "Sentiment" in st_enabled_scanners:
266
  st_sent_expander = st.sidebar.expander(
@@ -312,6 +427,7 @@ def get_scanner(scanner_name: str, vault: Vault, settings: Dict):
312
  match_type=settings["match_type"],
313
  case_sensitive=settings["case_sensitive"],
314
  redact=settings["redact"],
 
315
  )
316
 
317
  if scanner_name == "BanTopics":
@@ -323,6 +439,15 @@ def get_scanner(scanner_name: str, vault: Vault, settings: Dict):
323
  if scanner_name == "Deanonymize":
324
  return Deanonymize(vault=vault)
325
 
 
 
 
 
 
 
 
 
 
326
  if scanner_name == "Code":
327
  mode = settings["mode"]
328
 
@@ -359,10 +484,14 @@ def get_scanner(scanner_name: str, vault: Vault, settings: Dict):
359
  )
360
 
361
  if scanner_name == "Relevance":
362
- return Relevance(threshold=settings["threshold"])
363
 
364
  if scanner_name == "Sensitive":
365
- return Sensitive(entity_types=settings["entity_types"])
 
 
 
 
366
 
367
  if scanner_name == "Sentiment":
368
  return Sentiment(threshold=settings["threshold"])
 
6
 
7
  from llm_guard.input_scanners.anonymize import default_entity_types
8
  from llm_guard.output_scanners import (
9
+ JSON,
10
  BanSubstrings,
11
  BanTopics,
12
  Bias,
13
  Code,
14
  Deanonymize,
15
+ Language,
16
+ LanguageSame,
17
  MaliciousURLs,
18
  NoRefusal,
19
  Refutation,
 
21
  Relevance,
22
  Sensitive,
23
  )
24
+ from llm_guard.output_scanners.relevance import all_models as relevance_models
25
  from llm_guard.output_scanners.sentiment import Sentiment
26
  from llm_guard.output_scanners.toxicity import Toxicity
27
  from llm_guard.vault import Vault
 
36
  "Bias",
37
  "Code",
38
  "Deanonymize",
39
+ "JSON",
40
+ "Language",
41
+ "LanguageSame",
42
  "MaliciousURLs",
43
  "NoRefusal",
44
  "Refutation",
 
74
  st_bs_match_type = st.selectbox("Match type", ["str", "word"])
75
  st_bs_case_sensitive = st.checkbox("Case sensitive", value=False)
76
  st_bs_redact = st.checkbox("Redact", value=False)
77
+ st_bs_contains_all = st.checkbox("Contains all", value=False)
78
 
79
  settings["BanSubstrings"] = {
80
  "substrings": st_bs_substrings,
81
  "match_type": st_bs_match_type,
82
  "case_sensitive": st_bs_case_sensitive,
83
  "redact": st_bs_redact,
84
+ "contains_all": st_bs_contains_all,
85
  }
86
 
87
  if "BanTopics" in st_enabled_scanners:
 
94
  st_bt_topics = st_tags(
95
  label="List of topics",
96
  text="Type and press enter",
97
+ value=["violence"],
98
  suggestions=[],
99
  maxtags=30,
100
  key="bt_topics",
 
102
 
103
  st_bt_threshold = st.slider(
104
  label="Threshold",
105
+ value=0.6,
106
  min_value=0.0,
107
  max_value=1.0,
108
  step=0.05,
 
146
 
147
  settings["Code"] = {"languages": st_cd_languages, "mode": st_cd_mode}
148
 
149
+ if "JSON" in st_enabled_scanners:
150
+ st_json_expander = st.sidebar.expander(
151
+ "JSON",
152
+ expanded=False,
153
+ )
154
+
155
+ with st_json_expander:
156
+ st_json_required_elements = st.slider(
157
+ label="Required elements",
158
+ value=0,
159
+ min_value=0,
160
+ max_value=10,
161
+ step=1,
162
+ key="json_required_elements",
163
+ help="The minimum number of JSON elements that should be present",
164
+ )
165
+
166
+ settings["JSON"] = {"required_elements": st_json_required_elements}
167
+
168
+ if "Language" in st_enabled_scanners:
169
+ st_lan_expander = st.sidebar.expander(
170
+ "Language",
171
+ expanded=False,
172
+ )
173
+
174
+ with st_lan_expander:
175
+ st_lan_valid_language = st.multiselect(
176
+ "Languages",
177
+ [
178
+ "af",
179
+ "ar",
180
+ "bg",
181
+ "bn",
182
+ "ca",
183
+ "cs",
184
+ "cy",
185
+ "da",
186
+ "de",
187
+ "el",
188
+ "en",
189
+ "es",
190
+ "et",
191
+ "fa",
192
+ "fi",
193
+ "fr",
194
+ "gu",
195
+ "he",
196
+ "hi",
197
+ "hr",
198
+ "hu",
199
+ "id",
200
+ "it",
201
+ "ja",
202
+ "kn",
203
+ "ko",
204
+ "lt",
205
+ "lv",
206
+ "mk",
207
+ "ml",
208
+ "mr",
209
+ "ne",
210
+ "nl",
211
+ "no",
212
+ "pa",
213
+ "pl",
214
+ "pt",
215
+ "ro",
216
+ "ru",
217
+ "sk",
218
+ "sl",
219
+ "so",
220
+ "sq",
221
+ "sv",
222
+ "sw",
223
+ "ta",
224
+ "te",
225
+ "th",
226
+ "tl",
227
+ "tr",
228
+ "uk",
229
+ "ur",
230
+ "vi",
231
+ "zh-cn",
232
+ "zh-tw",
233
+ ],
234
+ default=["en"],
235
+ )
236
+
237
+ settings["Language"] = {
238
+ "valid_languages": st_lan_valid_language,
239
+ }
240
+
241
  if "MaliciousURLs" in st_enabled_scanners:
242
  st_murls_expander = st.sidebar.expander(
243
  "Malicious URLs",
 
332
  st_rele_threshold = st.slider(
333
  label="Threshold",
334
  value=0.5,
335
+ min_value=0.0,
336
  max_value=1.0,
337
  step=0.05,
338
  key="rele_threshold",
 
339
  )
340
 
341
+ st_rele_model = st.selectbox("Embeddings model", relevance_models, index=1)
342
+
343
+ settings["Relevance"] = {"threshold": st_rele_threshold, "model": st_rele_model}
344
 
345
  if "Sensitive" in st_enabled_scanners:
346
  st_sens_expander = st.sidebar.expander(
 
361
  st.caption(
362
  "Check all supported entities: https://microsoft.github.io/presidio/supported_entities/#list-of-supported-entities"
363
  )
364
+ st_sens_redact = st.checkbox("Redact", value=False)
365
+ st_sens_threshold = st.slider(
366
+ label="Threshold",
367
+ value=0,
368
+ min_value=0.0,
369
+ max_value=1.0,
370
+ step=0.1,
371
+ key="sens_threshold",
372
+ )
373
 
374
+ settings["Sensitive"] = {
375
+ "entity_types": st_sens_entity_types,
376
+ "redact": st_sens_redact,
377
+ "threshold": st_sens_threshold,
378
+ }
379
 
380
  if "Sentiment" in st_enabled_scanners:
381
  st_sent_expander = st.sidebar.expander(
 
427
  match_type=settings["match_type"],
428
  case_sensitive=settings["case_sensitive"],
429
  redact=settings["redact"],
430
+ contains_all=settings["contains_all"],
431
  )
432
 
433
  if scanner_name == "BanTopics":
 
439
  if scanner_name == "Deanonymize":
440
  return Deanonymize(vault=vault)
441
 
442
+ if scanner_name == "JSON":
443
+ return JSON(required_elements=settings["required_elements"])
444
+
445
+ if scanner_name == "Language":
446
+ return Language(valid_languages=settings["valid_languages"])
447
+
448
+ if scanner_name == "LanguageSame":
449
+ return LanguageSame()
450
+
451
  if scanner_name == "Code":
452
  mode = settings["mode"]
453
 
 
484
  )
485
 
486
  if scanner_name == "Relevance":
487
+ return Relevance(threshold=settings["threshold"], model=settings["model"])
488
 
489
  if scanner_name == "Sensitive":
490
+ return Sensitive(
491
+ entity_types=settings["entity_types"],
492
+ redact=settings["redact"],
493
+ threshold=settings["threshold"],
494
+ )
495
 
496
  if scanner_name == "Sentiment":
497
  return Sentiment(threshold=settings["threshold"])
prompt.py CHANGED
@@ -9,14 +9,17 @@ from llm_guard.input_scanners import (
9
  BanSubstrings,
10
  BanTopics,
11
  Code,
 
12
  PromptInjection,
13
  PromptInjectionV2,
 
14
  Secrets,
15
  Sentiment,
16
  TokenLimit,
17
  Toxicity,
18
  )
19
  from llm_guard.input_scanners.anonymize import default_entity_types
 
20
  from llm_guard.vault import Vault
21
 
22
  logger = logging.getLogger("llm-guard-playground")
@@ -28,8 +31,10 @@ def init_settings() -> (List, Dict):
28
  "BanSubstrings",
29
  "BanTopics",
30
  "Code",
 
31
  "PromptInjection",
32
  "PromptInjectionV2",
 
33
  "Secrets",
34
  "Sentiment",
35
  "TokenLimit",
@@ -88,6 +93,19 @@ def init_settings() -> (List, Dict):
88
  st_anon_use_faker = st.checkbox(
89
  "Use Faker", value=False, help="Use Faker library to generate fake data"
90
  )
 
 
 
 
 
 
 
 
 
 
 
 
 
91
 
92
  settings["Anonymize"] = {
93
  "entity_types": st_anon_entity_types,
@@ -95,6 +113,8 @@ def init_settings() -> (List, Dict):
95
  "allowed_names": st_anon_allowed_names,
96
  "preamble": st_anon_preamble,
97
  "use_faker": st_anon_use_faker,
 
 
98
  }
99
 
100
  if "BanSubstrings" in st_enabled_scanners:
@@ -113,12 +133,14 @@ def init_settings() -> (List, Dict):
113
  st_bs_match_type = st.selectbox("Match type", ["str", "word"])
114
  st_bs_case_sensitive = st.checkbox("Case sensitive", value=False)
115
  st_bs_redact = st.checkbox("Redact", value=False)
 
116
 
117
  settings["BanSubstrings"] = {
118
  "substrings": st_bs_substrings,
119
  "match_type": st_bs_match_type,
120
  "case_sensitive": st_bs_case_sensitive,
121
  "redact": st_bs_redact,
 
122
  }
123
 
124
  if "BanTopics" in st_enabled_scanners:
@@ -131,7 +153,7 @@ def init_settings() -> (List, Dict):
131
  st_bt_topics = st_tags(
132
  label="List of topics",
133
  text="Type and press enter",
134
- value=["politics", "religion", "money", "crime"],
135
  suggestions=[],
136
  maxtags=30,
137
  key="bt_topics",
@@ -139,7 +161,7 @@ def init_settings() -> (List, Dict):
139
 
140
  st_bt_threshold = st.slider(
141
  label="Threshold",
142
- value=0.75,
143
  min_value=0.0,
144
  max_value=1.0,
145
  step=0.05,
@@ -171,6 +193,79 @@ def init_settings() -> (List, Dict):
171
  "mode": st_cd_mode,
172
  }
173
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
174
  if "PromptInjection" in st_enabled_scanners:
175
  st_pi_expander = st.sidebar.expander(
176
  "Prompt Injection",
@@ -211,6 +306,36 @@ def init_settings() -> (List, Dict):
211
  "threshold": st_piv2_threshold,
212
  }
213
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
214
  if "Secrets" in st_enabled_scanners:
215
  st_sec_expander = st.sidebar.expander(
216
  "Secrets",
@@ -301,6 +426,8 @@ def get_scanner(scanner_name: str, vault: Vault, settings: Dict):
301
  entity_types=settings["entity_types"],
302
  preamble=settings["preamble"],
303
  use_faker=settings["use_faker"],
 
 
304
  )
305
 
306
  if scanner_name == "BanSubstrings":
@@ -309,6 +436,7 @@ def get_scanner(scanner_name: str, vault: Vault, settings: Dict):
309
  match_type=settings["match_type"],
310
  case_sensitive=settings["case_sensitive"],
311
  redact=settings["redact"],
 
312
  )
313
 
314
  if scanner_name == "BanTopics":
@@ -326,12 +454,29 @@ def get_scanner(scanner_name: str, vault: Vault, settings: Dict):
326
 
327
  return Code(allowed=allowed_languages, denied=denied_languages)
328
 
 
 
 
329
  if scanner_name == "PromptInjection":
330
  return PromptInjection(threshold=settings["threshold"])
331
 
332
  if scanner_name == "PromptInjectionV2":
333
  return PromptInjectionV2(threshold=settings["threshold"])
334
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
335
  if scanner_name == "Secrets":
336
  return Secrets(redact_mode=settings["redact_mode"])
337
 
 
9
  BanSubstrings,
10
  BanTopics,
11
  Code,
12
+ Language,
13
  PromptInjection,
14
  PromptInjectionV2,
15
+ Regex,
16
  Secrets,
17
  Sentiment,
18
  TokenLimit,
19
  Toxicity,
20
  )
21
  from llm_guard.input_scanners.anonymize import default_entity_types
22
+ from llm_guard.input_scanners.anonymize_helpers.analyzer import allowed_recognizers
23
  from llm_guard.vault import Vault
24
 
25
  logger = logging.getLogger("llm-guard-playground")
 
31
  "BanSubstrings",
32
  "BanTopics",
33
  "Code",
34
+ "Language",
35
  "PromptInjection",
36
  "PromptInjectionV2",
37
+ "Regex",
38
  "Secrets",
39
  "Sentiment",
40
  "TokenLimit",
 
93
  st_anon_use_faker = st.checkbox(
94
  "Use Faker", value=False, help="Use Faker library to generate fake data"
95
  )
96
+ st_anon_threshold = st.slider(
97
+ label="Threshold",
98
+ value=0,
99
+ min_value=0.0,
100
+ max_value=1.0,
101
+ step=0.1,
102
+ key="anon_threshold",
103
+ )
104
+ st_anon_recognizer = st.selectbox(
105
+ "Recognizer",
106
+ allowed_recognizers,
107
+ index=1,
108
+ )
109
 
110
  settings["Anonymize"] = {
111
  "entity_types": st_anon_entity_types,
 
113
  "allowed_names": st_anon_allowed_names,
114
  "preamble": st_anon_preamble,
115
  "use_faker": st_anon_use_faker,
116
+ "threshold": st_anon_threshold,
117
+ "recognizer": st_anon_recognizer,
118
  }
119
 
120
  if "BanSubstrings" in st_enabled_scanners:
 
133
  st_bs_match_type = st.selectbox("Match type", ["str", "word"])
134
  st_bs_case_sensitive = st.checkbox("Case sensitive", value=False)
135
  st_bs_redact = st.checkbox("Redact", value=False)
136
+ st_bs_contains_all = st.checkbox("Contains all", value=False)
137
 
138
  settings["BanSubstrings"] = {
139
  "substrings": st_bs_substrings,
140
  "match_type": st_bs_match_type,
141
  "case_sensitive": st_bs_case_sensitive,
142
  "redact": st_bs_redact,
143
+ "contains_all": st_bs_contains_all,
144
  }
145
 
146
  if "BanTopics" in st_enabled_scanners:
 
153
  st_bt_topics = st_tags(
154
  label="List of topics",
155
  text="Type and press enter",
156
+ value=["violence"],
157
  suggestions=[],
158
  maxtags=30,
159
  key="bt_topics",
 
161
 
162
  st_bt_threshold = st.slider(
163
  label="Threshold",
164
+ value=0.6,
165
  min_value=0.0,
166
  max_value=1.0,
167
  step=0.05,
 
193
  "mode": st_cd_mode,
194
  }
195
 
196
+ if "Language" in st_enabled_scanners:
197
+ st_lan_expander = st.sidebar.expander(
198
+ "Language",
199
+ expanded=False,
200
+ )
201
+
202
+ with st_lan_expander:
203
+ st_lan_valid_language = st.multiselect(
204
+ "Languages",
205
+ [
206
+ "af",
207
+ "ar",
208
+ "bg",
209
+ "bn",
210
+ "ca",
211
+ "cs",
212
+ "cy",
213
+ "da",
214
+ "de",
215
+ "el",
216
+ "en",
217
+ "es",
218
+ "et",
219
+ "fa",
220
+ "fi",
221
+ "fr",
222
+ "gu",
223
+ "he",
224
+ "hi",
225
+ "hr",
226
+ "hu",
227
+ "id",
228
+ "it",
229
+ "ja",
230
+ "kn",
231
+ "ko",
232
+ "lt",
233
+ "lv",
234
+ "mk",
235
+ "ml",
236
+ "mr",
237
+ "ne",
238
+ "nl",
239
+ "no",
240
+ "pa",
241
+ "pl",
242
+ "pt",
243
+ "ro",
244
+ "ru",
245
+ "sk",
246
+ "sl",
247
+ "so",
248
+ "sq",
249
+ "sv",
250
+ "sw",
251
+ "ta",
252
+ "te",
253
+ "th",
254
+ "tl",
255
+ "tr",
256
+ "uk",
257
+ "ur",
258
+ "vi",
259
+ "zh-cn",
260
+ "zh-tw",
261
+ ],
262
+ default=["en"],
263
+ )
264
+
265
+ settings["Language"] = {
266
+ "valid_languages": st_lan_valid_language,
267
+ }
268
+
269
  if "PromptInjection" in st_enabled_scanners:
270
  st_pi_expander = st.sidebar.expander(
271
  "Prompt Injection",
 
306
  "threshold": st_piv2_threshold,
307
  }
308
 
309
+ if "Regex" in st_enabled_scanners:
310
+ st_regex_expander = st.sidebar.expander(
311
+ "Regex",
312
+ expanded=False,
313
+ )
314
+
315
+ with st_regex_expander:
316
+ st_regex_patterns = st.text_area(
317
+ "Enter patterns to ban (one per line)",
318
+ value="Bearer [A-Za-z0-9-._~+/]+",
319
+ height=200,
320
+ ).split("\n")
321
+
322
+ st_regex_type = st.selectbox(
323
+ "Match type",
324
+ ["good", "bad"],
325
+ index=1,
326
+ help="good: allow only good patterns, bad: ban bad patterns",
327
+ )
328
+
329
+ st_redact = st.checkbox(
330
+ "Redact", value=False, help="Replace the matched bad patterns with [REDACTED]"
331
+ )
332
+
333
+ settings["Regex"] = {
334
+ "patterns": st_regex_patterns,
335
+ "type": st_regex_type,
336
+ "redact": st_redact,
337
+ }
338
+
339
  if "Secrets" in st_enabled_scanners:
340
  st_sec_expander = st.sidebar.expander(
341
  "Secrets",
 
426
  entity_types=settings["entity_types"],
427
  preamble=settings["preamble"],
428
  use_faker=settings["use_faker"],
429
+ threshold=settings["threshold"],
430
+ recognizer=settings["recognizer"],
431
  )
432
 
433
  if scanner_name == "BanSubstrings":
 
436
  match_type=settings["match_type"],
437
  case_sensitive=settings["case_sensitive"],
438
  redact=settings["redact"],
439
+ contains_all=settings["contains_all"],
440
  )
441
 
442
  if scanner_name == "BanTopics":
 
454
 
455
  return Code(allowed=allowed_languages, denied=denied_languages)
456
 
457
+ if scanner_name == "Language":
458
+ return Language(valid_languages=settings["valid_languages"])
459
+
460
  if scanner_name == "PromptInjection":
461
  return PromptInjection(threshold=settings["threshold"])
462
 
463
  if scanner_name == "PromptInjectionV2":
464
  return PromptInjectionV2(threshold=settings["threshold"])
465
 
466
+ if scanner_name == "Regex":
467
+ match_type = settings["type"]
468
+
469
+ good_patterns = None
470
+ bad_patterns = None
471
+ if match_type == "good":
472
+ good_patterns = settings["patterns"]
473
+ elif match_type == "bad":
474
+ bad_patterns = settings["patterns"]
475
+
476
+ return Regex(
477
+ good_patterns=good_patterns, bad_patterns=bad_patterns, redact=settings["redact"]
478
+ )
479
+
480
  if scanner_name == "Secrets":
481
  return Secrets(redact_mode=settings["redact_mode"])
482
 
prompt_text.txt CHANGED
@@ -2,14 +2,14 @@ Given the personal profile of Johnathan Edward Doe, please summarize the followi
2
 
3
  Profile:
4
 
5
- - Full Name: Johnathan Edward Doe
6
- - Date of Birth: April 12, 1990
7
- - Address: 123 Elm Street, Springfield, IL, 62701
8
- - Email: john.doe@example.com
9
- - Phone Number: (123) 456-7890
10
  - Educational Background:
11
- - Springfield High School, Graduated in 2008
12
- - Springfield University, B.Sc. Computer Science, Graduated in 2012
13
  - Employment:
14
- - ABC Tech Solutions, Software Engineer, 2012-2015
15
- - XYZ Global Systems, Senior Software Developer, 2015-2021
 
2
 
3
  Profile:
4
 
5
+ - Full Name: Johnathan Edward Doe.
6
+ - Date of Birth: April 12, 1990.
7
+ - Address: 123 Elm Street, Springfield, IL, 62701.
8
+ - Email: john.doe@example.com.
9
+ - Phone Number: (123) 456-7890.
10
  - Educational Background:
11
+ - Springfield High School, Graduated in 2008;
12
+ - Springfield University, B.Sc. Computer Science, Graduated in 2012.
13
  - Employment:
14
+ - ABC Tech Solutions, Software Engineer, 2012-2015;
15
+ - XYZ Global Systems, Senior Software Developer, 2015-2021.
requirements.txt CHANGED
@@ -1,4 +1,5 @@
1
- llm-guard==0.2.4
 
2
  pandas==2.1.0
3
  streamlit==1.26.0
4
  streamlit-tags==1.2.8
 
1
+ https://huggingface.co/beki/en_spacy_pii_distilbert/resolve/main/en_spacy_pii_distilbert-any-py3-none-any.whl
2
+ llm-guard==0.3.0
3
  pandas==2.1.0
4
  streamlit==1.26.0
5
  streamlit-tags==1.2.8