Spaces:
Running
Running
import gradio as gr | |
import pandas as pd | |
import torch | |
from transformers import AutoProcessor, Qwen2VLForConditionalGeneration | |
from PIL import Image | |
import io | |
from datetime import datetime | |
# โหลดโมเดลและ processor จาก Hugging Face | |
model_name = "Qwen/Qwen2-VL-7B-Instruct" | |
processor = AutoProcessor.from_pretrained(model_name) | |
model = Qwen2VLForConditionalGeneration.from_pretrained( | |
model_name, | |
torch_dtype=torch.bfloat16, | |
device_map="auto" | |
) | |
def extract_data_from_image(images): | |
results = [] | |
for idx, img_file in enumerate(images): | |
try: | |
image = Image.open(io.BytesIO(img_file.read())).convert("RGB") | |
# Prompt บอกโมเดลว่าให้ทำอะไร | |
prompt = """ | |
กรุณาสกัดข้อมูลสำคัญจากเอกสารนี้: | |
- วันที่ | |
- ยอดรวม | |
- ชื่อร้านค้า | |
- เลขใบเสร็จ | |
กรุณาตอบในรูปแบบ JSON | |
""" | |
messages = [ | |
{ | |
"role": "user", | |
"content": [ | |
{"type": "image"}, | |
{"type": "text", "text": prompt} | |
] | |
} | |
] | |
text_prompt = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) | |
inputs = processor(text=text_prompt, images=image, return_tensors="pt").to(model.device).bfloat16() | |
with torch.no_grad(): | |
generated_ids = model.generate(**inputs, max_new_tokens=512) | |
generated_ids_trimmed = [out_ids[len(inputs["input_ids"][0]):] for out_ids in generated_ids] | |
answer = processor.batch_decode(generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] | |
try: | |
structured = eval(answer.replace("```json", "").replace("```", "")) | |
except: | |
structured = {"raw_response": answer} | |
results.append({ | |
"file_name": img_file.name, | |
"data": str(structured), | |
"timestamp": datetime.now().isoformat() | |
}) | |
except Exception as e: | |
results.append({ | |
"file_name": img_file.name, | |
"data": f"เกิดข้อผิดพลาด: {str(e)}", | |
"timestamp": datetime.now().isoformat() | |
}) | |
df = pd.DataFrame(results) | |
df["structured_data"] = df["data"].astype(str) | |
# บันทึกเป็น Parquet | |
parquet_path = "output.parquet" | |
df.to_parquet(parquet_path) | |
return { | |
"table": df[["file_name", "structured_data"]], | |
"download": parquet_path | |
} | |
# UI Components | |
title = "📄 ระบบสกัดข้อมูลเอกสารอัตโนมัติ (รองรับภาษาไทย)" | |
description = "อัปโหลดภาพหลายไฟล์ → สกัดข้อมูล → แยกหัวข้อ → บันทึกเป็น Parquet" | |
interface = gr.Interface( | |
fn=extract_data_from_image, | |
inputs=gr.File(type="file", file_types=["image"], multiple=True), | |
outputs=[ | |
gr.Dataframe(label="ผลลัพธ์"), | |
gr.File(label="ดาวน์โหลด Parquet") | |
], | |
title=title, | |
description=description, | |
allow_flagging="never" | |
) | |
if __name__ == "__main__": | |
interface.launch() |