reqreq / app.py
protae5544's picture
Create app.py
2a24fae verified
import gradio as gr
import pandas as pd
import torch
from transformers import AutoProcessor, Qwen2VLForConditionalGeneration
from PIL import Image
import io
from datetime import datetime
# โหลดโมเดลและ processor จาก Hugging Face
model_name = "Qwen/Qwen2-VL-7B-Instruct"
processor = AutoProcessor.from_pretrained(model_name)
model = Qwen2VLForConditionalGeneration.from_pretrained(
model_name,
torch_dtype=torch.bfloat16,
device_map="auto"
)
def extract_data_from_image(images):
results = []
for idx, img_file in enumerate(images):
try:
image = Image.open(io.BytesIO(img_file.read())).convert("RGB")
# Prompt บอกโมเดลว่าให้ทำอะไร
prompt = """
กรุณาสกัดข้อมูลสำคัญจากเอกสารนี้:
- วันที่
- ยอดรวม
- ชื่อร้านค้า
- เลขใบเสร็จ
กรุณาตอบในรูปแบบ JSON
"""
messages = [
{
"role": "user",
"content": [
{"type": "image"},
{"type": "text", "text": prompt}
]
}
]
text_prompt = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
inputs = processor(text=text_prompt, images=image, return_tensors="pt").to(model.device).bfloat16()
with torch.no_grad():
generated_ids = model.generate(**inputs, max_new_tokens=512)
generated_ids_trimmed = [out_ids[len(inputs["input_ids"][0]):] for out_ids in generated_ids]
answer = processor.batch_decode(generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
try:
structured = eval(answer.replace("```json", "").replace("```", ""))
except:
structured = {"raw_response": answer}
results.append({
"file_name": img_file.name,
"data": str(structured),
"timestamp": datetime.now().isoformat()
})
except Exception as e:
results.append({
"file_name": img_file.name,
"data": f"เกิดข้อผิดพลาด: {str(e)}",
"timestamp": datetime.now().isoformat()
})
df = pd.DataFrame(results)
df["structured_data"] = df["data"].astype(str)
# บันทึกเป็น Parquet
parquet_path = "output.parquet"
df.to_parquet(parquet_path)
return {
"table": df[["file_name", "structured_data"]],
"download": parquet_path
}
# UI Components
title = "📄 ระบบสกัดข้อมูลเอกสารอัตโนมัติ (รองรับภาษาไทย)"
description = "อัปโหลดภาพหลายไฟล์ → สกัดข้อมูล → แยกหัวข้อ → บันทึกเป็น Parquet"
interface = gr.Interface(
fn=extract_data_from_image,
inputs=gr.File(type="file", file_types=["image"], multiple=True),
outputs=[
gr.Dataframe(label="ผลลัพธ์"),
gr.File(label="ดาวน์โหลด Parquet")
],
title=title,
description=description,
allow_flagging="never"
)
if __name__ == "__main__":
interface.launch()