Spaces:
Sleeping
Sleeping
#!/usr/bin/env python3 | |
"""Hugging Face API and service integration tests""" | |
import asyncio | |
import os | |
import aiohttp | |
import base64 | |
from pathlib import Path | |
from dotenv import load_dotenv | |
load_dotenv() | |
async def test_api_key(): | |
"""Test if HF API key is valid""" | |
hf_api_key = os.getenv('HF_API_KEY') | |
if not hf_api_key: | |
print("ERROR: HF_API_KEY not found in environment variables") | |
return None | |
print(f"SUCCESS: HF_API_KEY found: {hf_api_key[:10]}...") | |
try: | |
async with aiohttp.ClientSession() as session: | |
async with session.get( | |
"https://huggingface.co/api/whoami", | |
headers={"Authorization": f"Bearer {hf_api_key}"} | |
) as resp: | |
if resp.status == 200: | |
user_info = await resp.json() | |
print(f"SUCCESS: API key valid! User: {user_info.get('name', 'Unknown')}") | |
return hf_api_key | |
else: | |
print(f"ERROR: API key validation failed: {resp.status}") | |
return None | |
except Exception as e: | |
print(f"ERROR: API key validation exception: {str(e)}") | |
return None | |
async def test_basic_models(api_key): | |
"""Test basic model accessibility""" | |
headers = { | |
"Authorization": f"Bearer {api_key}", | |
"Content-Type": "application/json" | |
} | |
print("\nTESTING: GPT-2 text generation...") | |
try: | |
async with aiohttp.ClientSession() as session: | |
payload = { | |
"inputs": "Hello, this is a test message.", | |
"parameters": {"max_new_tokens": 50} | |
} | |
async with session.post( | |
"https://api-inference.huggingface.co/models/gpt2", | |
headers=headers, | |
json=payload, | |
timeout=aiohttp.ClientTimeout(total=30) | |
) as resp: | |
if resp.status == 200: | |
result = await resp.json() | |
print(f"SUCCESS: GPT-2 test successful") | |
elif resp.status == 503: | |
print(f"LOADING: GPT-2 is loading") | |
else: | |
print(f"ERROR: GPT-2 test failed: {resp.status}") | |
except Exception as e: | |
print(f"ERROR: GPT-2 test exception: {str(e)}") | |
print("\nTESTING: Image captioning pipeline...") | |
try: | |
async with aiohttp.ClientSession() as session: | |
test_image = "" | |
payload = { | |
"inputs": test_image, | |
"parameters": {"max_new_tokens": 100} | |
} | |
async with session.post( | |
"https://api-inference.huggingface.co/pipeline/image-to-text", | |
headers=headers, | |
json=payload, | |
timeout=aiohttp.ClientTimeout(total=30) | |
) as resp: | |
if resp.status == 200: | |
result = await resp.json() | |
print(f"SUCCESS: Image captioning test successful") | |
elif resp.status == 503: | |
print(f"LOADING: Image captioning service is loading") | |
else: | |
print(f"ERROR: Image captioning test failed: {resp.status}") | |
except Exception as e: | |
print(f"ERROR: Image captioning test exception: {str(e)}") | |
async def test_vision_models(api_key): | |
"""Test vision-language models""" | |
headers = { | |
"Authorization": f"Bearer {api_key}", | |
"Content-Type": "application/json" | |
} | |
models = [ | |
{ | |
"name": "LLaVA 1.5 7B", | |
"model_id": "llava-hf/llava-1.5-7b-hf", | |
"endpoint": "https://api-inference.huggingface.co/models/llava-hf/llava-1.5-7b-hf" | |
}, | |
{ | |
"name": "BLIP-2", | |
"model_id": "Salesforce/blip-image-captioning-base", | |
"endpoint": "https://api-inference.huggingface.co/pipeline/image-to-text" | |
} | |
] | |
dummy_image = b"dummy_image_data_for_testing" | |
image_base64 = base64.b64encode(dummy_image).decode('utf-8') | |
for model in models: | |
print(f"\nTESTING: {model['name']}...") | |
try: | |
async with aiohttp.ClientSession() as session: | |
if "pipeline" in model['endpoint']: | |
payload = { | |
"inputs": f"data:image/jpeg;base64,{image_base64}", | |
"parameters": {"max_new_tokens": 100} | |
} | |
else: | |
payload = { | |
"inputs": [ | |
{"type": "text", "text": "Describe this image in detail."}, | |
{"type": "image_url", "image_url": {"url": f"data:image/jpeg;base64,{image_base64}"}} | |
], | |
"parameters": {"max_new_tokens": 200, "temperature": 0.7} | |
} | |
async with session.post( | |
model['endpoint'], | |
headers=headers, | |
json=payload, | |
timeout=aiohttp.ClientTimeout(total=60) | |
) as resp: | |
if resp.status == 200: | |
print(f"SUCCESS: {model['name']} test successful") | |
elif resp.status == 503: | |
print(f"LOADING: {model['name']} is loading") | |
elif resp.status == 404: | |
print(f"ERROR: {model['name']} not found") | |
else: | |
print(f"ERROR: {model['name']} test failed: {resp.status}") | |
except Exception as e: | |
print(f"ERROR: {model['name']} test exception: {str(e)}") | |
async def test_service_integration(api_key): | |
"""Test Hugging Face service integration with the app""" | |
print("\nTESTING: Service integration...") | |
try: | |
import sys | |
sys.path.append(os.path.join(os.path.dirname(__file__), '..')) | |
from app.services.huggingface_service import LLaVAService, BLIP2Service, InstructBLIPService | |
from app.services.vlm_service import vlm_manager | |
llava_service = LLaVAService(api_key) | |
blip2_service = BLIP2Service(api_key) | |
instructblip_service = InstructBLIPService(api_key) | |
vlm_manager.register_service(llava_service) | |
vlm_manager.register_service(blip2_service) | |
vlm_manager.register_service(instructblip_service) | |
print(f"SUCCESS: All services registered. Available: {list(vlm_manager.services.keys())}") | |
dummy_image_bytes = b"dummy_image_data_for_testing" | |
try: | |
result = await llava_service.generate_caption(dummy_image_bytes, "Describe this image") | |
print(f"SUCCESS: LLaVA service test completed") | |
except Exception as e: | |
print(f"ERROR: LLaVA service test failed: {e}") | |
try: | |
result = await blip2_service.generate_caption(dummy_image_bytes, "Describe this image") | |
print(f"SUCCESS: BLIP2 service test completed") | |
except Exception as e: | |
print(f"ERROR: BLIP2 service test failed: {e}") | |
try: | |
result = await instructblip_service.generate_caption(dummy_image_bytes, "Describe this image") | |
print(f"SUCCESS: InstructBLIP service test completed") | |
except Exception as e: | |
print(f"ERROR: InstructBLIP service test failed: {e}") | |
except ImportError as e: | |
print(f"ERROR: Could not import services: {e}") | |
except Exception as e: | |
print(f"ERROR: Service integration test failed: {e}") | |
async def main(): | |
"""Run all Hugging Face tests""" | |
print("Hugging Face Integration Tests") | |
print("=" * 50) | |
api_key = await test_api_key() | |
if not api_key: | |
print("\nERROR: Cannot proceed without valid API key") | |
return | |
await test_basic_models(api_key) | |
await test_vision_models(api_key) | |
await test_service_integration(api_key) | |
print("\n" + "=" * 50) | |
print("All Hugging Face tests completed") | |
if __name__ == "__main__": | |
asyncio.run(main()) | |