SCGR's picture
UI refine & clean up
1686de5
raw
history blame
8.66 kB
#!/usr/bin/env python3
"""Hugging Face API and service integration tests"""
import asyncio
import os
import aiohttp
import base64
from pathlib import Path
from dotenv import load_dotenv
load_dotenv()
async def test_api_key():
"""Test if HF API key is valid"""
hf_api_key = os.getenv('HF_API_KEY')
if not hf_api_key:
print("ERROR: HF_API_KEY not found in environment variables")
return None
print(f"SUCCESS: HF_API_KEY found: {hf_api_key[:10]}...")
try:
async with aiohttp.ClientSession() as session:
async with session.get(
"https://huggingface.co/api/whoami",
headers={"Authorization": f"Bearer {hf_api_key}"}
) as resp:
if resp.status == 200:
user_info = await resp.json()
print(f"SUCCESS: API key valid! User: {user_info.get('name', 'Unknown')}")
return hf_api_key
else:
print(f"ERROR: API key validation failed: {resp.status}")
return None
except Exception as e:
print(f"ERROR: API key validation exception: {str(e)}")
return None
async def test_basic_models(api_key):
"""Test basic model accessibility"""
headers = {
"Authorization": f"Bearer {api_key}",
"Content-Type": "application/json"
}
print("\nTESTING: GPT-2 text generation...")
try:
async with aiohttp.ClientSession() as session:
payload = {
"inputs": "Hello, this is a test message.",
"parameters": {"max_new_tokens": 50}
}
async with session.post(
"https://api-inference.huggingface.co/models/gpt2",
headers=headers,
json=payload,
timeout=aiohttp.ClientTimeout(total=30)
) as resp:
if resp.status == 200:
result = await resp.json()
print(f"SUCCESS: GPT-2 test successful")
elif resp.status == 503:
print(f"LOADING: GPT-2 is loading")
else:
print(f"ERROR: GPT-2 test failed: {resp.status}")
except Exception as e:
print(f"ERROR: GPT-2 test exception: {str(e)}")
print("\nTESTING: Image captioning pipeline...")
try:
async with aiohttp.ClientSession() as session:
test_image = ""
payload = {
"inputs": test_image,
"parameters": {"max_new_tokens": 100}
}
async with session.post(
"https://api-inference.huggingface.co/pipeline/image-to-text",
headers=headers,
json=payload,
timeout=aiohttp.ClientTimeout(total=30)
) as resp:
if resp.status == 200:
result = await resp.json()
print(f"SUCCESS: Image captioning test successful")
elif resp.status == 503:
print(f"LOADING: Image captioning service is loading")
else:
print(f"ERROR: Image captioning test failed: {resp.status}")
except Exception as e:
print(f"ERROR: Image captioning test exception: {str(e)}")
async def test_vision_models(api_key):
"""Test vision-language models"""
headers = {
"Authorization": f"Bearer {api_key}",
"Content-Type": "application/json"
}
models = [
{
"name": "LLaVA 1.5 7B",
"model_id": "llava-hf/llava-1.5-7b-hf",
"endpoint": "https://api-inference.huggingface.co/models/llava-hf/llava-1.5-7b-hf"
},
{
"name": "BLIP-2",
"model_id": "Salesforce/blip-image-captioning-base",
"endpoint": "https://api-inference.huggingface.co/pipeline/image-to-text"
}
]
dummy_image = b"dummy_image_data_for_testing"
image_base64 = base64.b64encode(dummy_image).decode('utf-8')
for model in models:
print(f"\nTESTING: {model['name']}...")
try:
async with aiohttp.ClientSession() as session:
if "pipeline" in model['endpoint']:
payload = {
"inputs": f"data:image/jpeg;base64,{image_base64}",
"parameters": {"max_new_tokens": 100}
}
else:
payload = {
"inputs": [
{"type": "text", "text": "Describe this image in detail."},
{"type": "image_url", "image_url": {"url": f"data:image/jpeg;base64,{image_base64}"}}
],
"parameters": {"max_new_tokens": 200, "temperature": 0.7}
}
async with session.post(
model['endpoint'],
headers=headers,
json=payload,
timeout=aiohttp.ClientTimeout(total=60)
) as resp:
if resp.status == 200:
print(f"SUCCESS: {model['name']} test successful")
elif resp.status == 503:
print(f"LOADING: {model['name']} is loading")
elif resp.status == 404:
print(f"ERROR: {model['name']} not found")
else:
print(f"ERROR: {model['name']} test failed: {resp.status}")
except Exception as e:
print(f"ERROR: {model['name']} test exception: {str(e)}")
async def test_service_integration(api_key):
"""Test Hugging Face service integration with the app"""
print("\nTESTING: Service integration...")
try:
import sys
sys.path.append(os.path.join(os.path.dirname(__file__), '..'))
from app.services.huggingface_service import LLaVAService, BLIP2Service, InstructBLIPService
from app.services.vlm_service import vlm_manager
llava_service = LLaVAService(api_key)
blip2_service = BLIP2Service(api_key)
instructblip_service = InstructBLIPService(api_key)
vlm_manager.register_service(llava_service)
vlm_manager.register_service(blip2_service)
vlm_manager.register_service(instructblip_service)
print(f"SUCCESS: All services registered. Available: {list(vlm_manager.services.keys())}")
dummy_image_bytes = b"dummy_image_data_for_testing"
try:
result = await llava_service.generate_caption(dummy_image_bytes, "Describe this image")
print(f"SUCCESS: LLaVA service test completed")
except Exception as e:
print(f"ERROR: LLaVA service test failed: {e}")
try:
result = await blip2_service.generate_caption(dummy_image_bytes, "Describe this image")
print(f"SUCCESS: BLIP2 service test completed")
except Exception as e:
print(f"ERROR: BLIP2 service test failed: {e}")
try:
result = await instructblip_service.generate_caption(dummy_image_bytes, "Describe this image")
print(f"SUCCESS: InstructBLIP service test completed")
except Exception as e:
print(f"ERROR: InstructBLIP service test failed: {e}")
except ImportError as e:
print(f"ERROR: Could not import services: {e}")
except Exception as e:
print(f"ERROR: Service integration test failed: {e}")
async def main():
"""Run all Hugging Face tests"""
print("Hugging Face Integration Tests")
print("=" * 50)
api_key = await test_api_key()
if not api_key:
print("\nERROR: Cannot proceed without valid API key")
return
await test_basic_models(api_key)
await test_vision_models(api_key)
await test_service_integration(api_key)
print("\n" + "=" * 50)
print("All Hugging Face tests completed")
if __name__ == "__main__":
asyncio.run(main())