Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,190 +1,113 @@
|
|
|
|
1 |
import gradio as gr
|
2 |
-
from tensorflow.keras.utils import img_to_array,load_img
|
3 |
from keras.models import load_model
|
4 |
import numpy as np
|
|
|
5 |
|
6 |
# Load the pre-trained model from the local path
|
7 |
model_path = 'apple.h5'
|
8 |
-
model = load_model(model_path) # Load the model here
|
9 |
-
|
10 |
-
def predict_disease(image_file, model, all_labels):
|
11 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
try:
|
13 |
# Load and preprocess the image
|
14 |
-
|
|
|
15 |
img_array = img_to_array(img)
|
16 |
img_array = np.expand_dims(img_array, axis=0) # Add batch dimension
|
17 |
img_array = img_array / 255.0 # Normalize the image
|
18 |
|
19 |
# Predict the class
|
20 |
-
predictions = model.predict(img_array)
|
21 |
predicted_class = np.argmax(predictions[0])
|
22 |
-
|
23 |
# Get the predicted class label
|
24 |
predicted_label = all_labels[predicted_class]
|
25 |
-
|
26 |
-
#
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
margin-left: 90px;
|
37 |
-
margin-top: 15px;
|
38 |
-
margin-bottom: 15px;
|
39 |
-
}
|
40 |
-
h4{
|
41 |
-
font-size: 17px;
|
42 |
-
margin-top: 15px;
|
43 |
-
}
|
44 |
-
h4:hover{
|
45 |
-
cursor: pointer;
|
46 |
-
}
|
47 |
-
|
48 |
-
h3:hover{
|
49 |
-
cursor: pointer;
|
50 |
-
color: blue;
|
51 |
-
transform: scale(1.3);
|
52 |
-
}
|
53 |
-
.note{
|
54 |
-
text-align: center;
|
55 |
-
font-size: 16px;
|
56 |
-
}
|
57 |
-
p{
|
58 |
-
font-size: 13px;
|
59 |
-
text-align: center;
|
60 |
-
}
|
61 |
-
|
62 |
-
</style>
|
63 |
-
<h3><center><b>Cedar Apple Rust</b></center></h3>
|
64 |
-
<h4>PESTICIDES TO BE USED:</h4>
|
65 |
-
<ul>
|
66 |
<li>1. Chlorothalonil (Daconil)</li>
|
67 |
<li>2. Mancozeb (Dithane)</li>
|
68 |
<li>3. Propiconazole</li>
|
69 |
<li>4. Azoxystrobin (Heritage)</li>
|
70 |
<li>5. Pyraclostrobin (Cabrio)</li>
|
71 |
-
|
72 |
-
|
73 |
-
</
|
74 |
-
<p class="note"><b>* * * IMPORTANT NOTE * * *</b></p>
|
75 |
-
<p>Be sure to follow local regulations and guidelines for application</p>
|
76 |
-
|
77 |
-
|
78 |
"""
|
79 |
-
elif predicted_label=='Apple Scrab':
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
font-size: 15px;
|
84 |
-
margin-left: 90px;
|
85 |
-
margin-top: 15px;
|
86 |
-
margin-bottom: 15px;
|
87 |
-
}
|
88 |
-
h4{
|
89 |
-
font-size: 17px;
|
90 |
-
margin-top: 15px;
|
91 |
-
}
|
92 |
-
h4:hover{
|
93 |
-
cursor: pointer;
|
94 |
-
}
|
95 |
-
|
96 |
-
h3:hover{
|
97 |
-
cursor: pointer;
|
98 |
-
color: blue;
|
99 |
-
transform: scale(1.3);
|
100 |
-
}
|
101 |
-
.note{
|
102 |
-
text-align: center;
|
103 |
-
font-size: 16px;
|
104 |
-
}
|
105 |
-
p{
|
106 |
-
font-size: 13px;
|
107 |
-
text-align: center;
|
108 |
-
}
|
109 |
-
|
110 |
-
</style>
|
111 |
-
<h3><center><b>Apple Scrab</b></center></h3>
|
112 |
-
<h4>PESTICIDES TO BE USED:</h4>
|
113 |
-
<ul>
|
114 |
<li>1. Chlorothalonil (Daconil)</li>
|
115 |
<li>2. Mancozeb (Dithane)</li>
|
116 |
<li>3. Propiconazole</li>
|
117 |
<li>4. Azoxystrobin (Heritage)</li>
|
118 |
<li>5. Pyraclostrobin (Cabrio)</li>
|
119 |
-
|
120 |
-
|
121 |
-
</
|
122 |
-
<p class="note"><b>* * * IMPORTANT NOTE * * *</b></p>
|
123 |
-
<p>Be sure to follow local regulations and guidelines for application</p>
|
124 |
-
|
125 |
-
|
126 |
"""
|
127 |
-
elif predicted_label=='Apple Black Rot':
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
font-size: 15px;
|
132 |
-
margin-left: 90px;
|
133 |
-
margin-top: 15px;
|
134 |
-
margin-bottom: 15px;
|
135 |
-
}
|
136 |
-
h4{
|
137 |
-
font-size: 17px;
|
138 |
-
margin-top: 15px;
|
139 |
-
}
|
140 |
-
h4:hover{
|
141 |
-
cursor: pointer;
|
142 |
-
}
|
143 |
-
|
144 |
-
h3:hover{
|
145 |
-
cursor: pointer;
|
146 |
-
color: blue;
|
147 |
-
transform: scale(1.3);
|
148 |
-
}
|
149 |
-
.note{
|
150 |
-
text-align: center;
|
151 |
-
font-size: 16px;
|
152 |
-
}
|
153 |
-
p{
|
154 |
-
font-size: 13px;
|
155 |
-
text-align: center;
|
156 |
-
}
|
157 |
-
|
158 |
-
</style>
|
159 |
-
<h3><center><b>Apple Black Rot</b></center></h3>
|
160 |
-
<h4>PESTICIDES TO BE USED:</h4>
|
161 |
-
<ul>
|
162 |
<li>1. Chlorothalonil (Daconil)</li>
|
163 |
<li>2. Mancozeb (Dithane)</li>
|
164 |
<li>3. Propiconazole</li>
|
165 |
<li>4. Azoxystrobin (Heritage)</li>
|
166 |
<li>5. Pyraclostrobin (Cabrio)</li>
|
167 |
-
|
168 |
-
|
169 |
-
</
|
170 |
-
<p class="note"><b>* * * IMPORTANT NOTE * * *</b></p>
|
171 |
-
<p>Be sure to follow local regulations and guidelines for application</p>
|
172 |
-
|
173 |
-
|
174 |
"""
|
175 |
-
|
176 |
-
|
177 |
-
|
|
|
|
|
|
|
178 |
else:
|
179 |
-
|
180 |
-
"""
|
181 |
|
182 |
-
|
183 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
184 |
|
185 |
except Exception as e:
|
186 |
-
print(f"Error: {e}")
|
187 |
-
return
|
188 |
|
189 |
# List of class labels
|
190 |
all_labels = [
|
@@ -194,18 +117,42 @@ all_labels = [
|
|
194 |
'Apple Black Rot'
|
195 |
]
|
196 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
197 |
# Define the Gradio interface
|
198 |
-
def gradio_predict(image_file):
|
199 |
-
|
|
|
|
|
200 |
|
201 |
-
# Create
|
202 |
gr_interface = gr.Interface(
|
203 |
-
fn=gradio_predict,
|
204 |
-
inputs=
|
205 |
-
|
|
|
|
|
|
|
206 |
title="Apple Disease Predictor",
|
207 |
-
description="Upload an image of a plant to predict the disease."
|
208 |
)
|
209 |
|
210 |
# Launch the Gradio app
|
211 |
-
gr_interface.launch()
|
|
|
1 |
+
import h5py
|
2 |
import gradio as gr
|
3 |
+
from tensorflow.keras.utils import img_to_array, load_img
|
4 |
from keras.models import load_model
|
5 |
import numpy as np
|
6 |
+
from deep_translator import GoogleTranslator
|
7 |
|
8 |
# Load the pre-trained model from the local path
|
9 |
model_path = 'apple.h5'
|
|
|
|
|
|
|
10 |
|
11 |
+
# Check if the model is loading correctly
|
12 |
+
try:
|
13 |
+
with h5py.File(model_path, 'r+') as f:
|
14 |
+
if 'groups' in f.attrs['model_config']:
|
15 |
+
model_config_string = f.attrs['model_config']
|
16 |
+
model_config_string = model_config_string.replace('"groups": 1,', '')
|
17 |
+
model_config_string = model_config_string.replace('"groups": 1}', '}')
|
18 |
+
f.attrs['model_config'] = model_config_string.encode('utf-8')
|
19 |
+
|
20 |
+
model = load_model(model_path)
|
21 |
+
print("Model loaded successfully.")
|
22 |
+
except Exception as e:
|
23 |
+
print(f"Error loading model: {e}")
|
24 |
+
|
25 |
+
def predict_disease(image_file, model, all_labels, target_language):
|
26 |
try:
|
27 |
# Load and preprocess the image
|
28 |
+
print(f"Received image file: {image_file}")
|
29 |
+
img = load_img(image_file, target_size=(224, 224)) # Ensure image size matches model input
|
30 |
img_array = img_to_array(img)
|
31 |
img_array = np.expand_dims(img_array, axis=0) # Add batch dimension
|
32 |
img_array = img_array / 255.0 # Normalize the image
|
33 |
|
34 |
# Predict the class
|
35 |
+
predictions = model.predict(img_array)
|
36 |
predicted_class = np.argmax(predictions[0])
|
37 |
+
|
38 |
# Get the predicted class label
|
39 |
predicted_label = all_labels[predicted_class]
|
40 |
+
|
41 |
+
# Translate the predicted label to the selected language
|
42 |
+
translated_label = GoogleTranslator(source='en', target=target_language).translate(predicted_label)
|
43 |
+
|
44 |
+
# Provide pesticide information based on the predicted label
|
45 |
+
if predicted_label == 'Cedar Apple Rust':
|
46 |
+
pesticide_info = """
|
47 |
+
<h2><center><b>Cedar Apple Rust</b></center></h2>
|
48 |
+
<h4>PESTICIDES TO BE USED:</h4><br>
|
49 |
+
|
50 |
+
<ul style="font-size:17px;margin-left:40px;">
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
<li>1. Chlorothalonil (Daconil)</li>
|
52 |
<li>2. Mancozeb (Dithane)</li>
|
53 |
<li>3. Propiconazole</li>
|
54 |
<li>4. Azoxystrobin (Heritage)</li>
|
55 |
<li>5. Pyraclostrobin (Cabrio)</li>
|
56 |
+
</ul><br>
|
57 |
+
<center><p class="note" style="font-size:15px;"><b>* * * IMPORTANT NOTE * * *</b></p></center><br>
|
58 |
+
<center><p style="font-size:13px;">Be sure to follow local regulations and guidelines for application</p></center>
|
|
|
|
|
|
|
|
|
59 |
"""
|
60 |
+
elif predicted_label == 'Apple Scrab':
|
61 |
+
pesticide_info = """<h2><center><b>Apple Scrab</b></center></h2>
|
62 |
+
<h4>PESTICIDES TO BE USED:</h4><br>
|
63 |
+
<ul style="font-size:17px;margin-left:40px;">
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
<li>1. Chlorothalonil (Daconil)</li>
|
65 |
<li>2. Mancozeb (Dithane)</li>
|
66 |
<li>3. Propiconazole</li>
|
67 |
<li>4. Azoxystrobin (Heritage)</li>
|
68 |
<li>5. Pyraclostrobin (Cabrio)</li>
|
69 |
+
</ul><br>
|
70 |
+
<center><p class="note" style="font-size:15px;"><b>* * * IMPORTANT NOTE * * *</b></p></center><br>
|
71 |
+
<center><p style="font-size:13px;">Be sure to follow local regulations and guidelines for application</p></center>
|
|
|
|
|
|
|
|
|
72 |
"""
|
73 |
+
elif predicted_label == 'Apple Black Rot':
|
74 |
+
pesticide_info = """<h2><center><b>Apple Black Rot</b></center></h2>
|
75 |
+
<h4>PESTICIDES TO BE USED:</h4><br>
|
76 |
+
<ul style="font-size:17px;margin-left:40px;">
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
<li>1. Chlorothalonil (Daconil)</li>
|
78 |
<li>2. Mancozeb (Dithane)</li>
|
79 |
<li>3. Propiconazole</li>
|
80 |
<li>4. Azoxystrobin (Heritage)</li>
|
81 |
<li>5. Pyraclostrobin (Cabrio)</li>
|
82 |
+
</ul><br>
|
83 |
+
<center><p class="note" style="font-size:15px;"><b>* * * IMPORTANT NOTE * * *</b></p></center><br>
|
84 |
+
<center><p style="font-size:13px;">Be sure to follow local regulations and guidelines for application</p></center>
|
|
|
|
|
|
|
|
|
85 |
"""
|
86 |
+
|
87 |
+
|
88 |
+
elif predicted_label == 'Apple Healthy':
|
89 |
+
pesticide_info = """<h2><center><b>Apple Healthy</b></center></h2>
|
90 |
+
<h5> No pesticides needed"""
|
91 |
+
|
92 |
else:
|
93 |
+
pesticide_info = 'No pesticide information available.'
|
|
|
94 |
|
95 |
+
print(f"Pesticide Info (Before Translation): {pesticide_info}")
|
96 |
|
97 |
+
# Translate the pesticide information to the selected language
|
98 |
+
translated_pesticide_info = GoogleTranslator(source='en', target=target_language).translate(pesticide_info)
|
99 |
+
print(f"Translated Pesticide Info: {translated_pesticide_info}")
|
100 |
+
|
101 |
+
# Return translated label and pesticide information with associated styling
|
102 |
+
predicted_label_html = f"""
|
103 |
+
|
104 |
+
{translated_pesticide_info}
|
105 |
+
"""
|
106 |
+
return predicted_label_html
|
107 |
|
108 |
except Exception as e:
|
109 |
+
print(f"Error during prediction: {e}")
|
110 |
+
return f"<h3>Error: {e}</h3>"
|
111 |
|
112 |
# List of class labels
|
113 |
all_labels = [
|
|
|
117 |
'Apple Black Rot'
|
118 |
]
|
119 |
|
120 |
+
# Language codes and their full names (display full names in dropdown)
|
121 |
+
language_choices = {
|
122 |
+
'hi': 'Hindi',
|
123 |
+
'te': 'Telugu',
|
124 |
+
'en': 'English',
|
125 |
+
'ml': 'Malayalam',
|
126 |
+
'ta': 'Tamil',
|
127 |
+
'bn': 'Bengali',
|
128 |
+
'gu': 'Gujarati',
|
129 |
+
'kn': 'Kannada',
|
130 |
+
'mr': 'Marathi'
|
131 |
+
}
|
132 |
+
|
133 |
+
# Mapping full names back to their corresponding language code
|
134 |
+
full_to_code = {value: key for key, value in language_choices.items()}
|
135 |
+
|
136 |
+
# Create a dropdown of full language names, using the full name in the UI
|
137 |
+
languages = list(language_choices.values()) # List of full language names
|
138 |
+
|
139 |
# Define the Gradio interface
|
140 |
+
def gradio_predict(image_file, target_language):
|
141 |
+
# Map full name back to language code for translation
|
142 |
+
language_code = full_to_code.get(target_language, 'en')
|
143 |
+
return predict_disease(image_file, model, all_labels, language_code)
|
144 |
|
145 |
+
# Create the Gradio interface
|
146 |
gr_interface = gr.Interface(
|
147 |
+
fn=gradio_predict,
|
148 |
+
inputs=[
|
149 |
+
gr.Image(type="filepath"), # Image input for disease prediction
|
150 |
+
gr.Dropdown(label="Select language", choices=languages, value='English') # Language selection dropdown with full names
|
151 |
+
],
|
152 |
+
outputs="html", # Output will be in HTML (translated text)
|
153 |
title="Apple Disease Predictor",
|
154 |
+
description="Upload an image of a plant to predict the disease and get the translated label and pesticide information in the selected language."
|
155 |
)
|
156 |
|
157 |
# Launch the Gradio app
|
158 |
+
gr_interface.launch()
|