Spaces:
Sleeping
Sleeping
better parsed body
Browse files
app.py
CHANGED
@@ -1,30 +1,30 @@
|
|
1 |
-
import
|
2 |
-
from transformers import pipeline
|
3 |
-
from sentence_transformers import CrossEncoder
|
4 |
import requests
|
|
|
5 |
from bs4 import BeautifulSoup
|
6 |
-
from
|
7 |
-
from transformers import
|
8 |
-
import openai
|
9 |
|
10 |
all_documents = {}
|
11 |
|
|
|
12 |
def qa_gpt3(question, context):
|
13 |
print(question, context)
|
14 |
openai.api_key = st.secrets["openai_key"]
|
15 |
|
16 |
response = openai.Completion.create(
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
)
|
25 |
print(response)
|
26 |
return {'answer': response['choices'][0]['text'].strip()}
|
27 |
|
|
|
28 |
st.title('Document Question Answering System')
|
29 |
|
30 |
qa_model = None
|
@@ -32,13 +32,14 @@ qa_model = None
|
|
32 |
crawl_urls = st.checkbox('Crawl?', value=False)
|
33 |
|
34 |
document_text = st.text_area(
|
35 |
-
label="Links (Comma separated)", height=100,
|
36 |
-
value='https://www.databricks.com/blog/2022/11/15/values-define-databricks-culture.html, https://databricks.com/product/databricks-runtime-for-machine-learning/faq'
|
37 |
)
|
38 |
query = st.text_input("Query")
|
39 |
|
40 |
qa_option = st.selectbox('Q/A Answerer', ('gpt3', 'a-ware/bart-squadv2'))
|
41 |
-
tokenizing = st.selectbox('How to Tokenize',
|
|
|
42 |
|
43 |
if qa_option == 'gpt3':
|
44 |
qa_model = qa_gpt3
|
@@ -48,6 +49,7 @@ st.write(f'Using {qa_option} as the Q/A model')
|
|
48 |
|
49 |
encoder = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2')
|
50 |
|
|
|
51 |
def get_relevent_passage(question, documents):
|
52 |
query_paragraph_list = [(question, para) for para in list(documents.keys()) if len(para.strip()) > 0]
|
53 |
|
@@ -76,12 +78,15 @@ def get_documents(document_text, crawl=crawl_urls):
|
|
76 |
st.write('Give me a sec, crawling..')
|
77 |
import re
|
78 |
|
79 |
-
more_urls = re.findall('http[s]?://(?:[a-zA-Z]|[0-9]|[$-_@.&+]|[!*\(\),]|(?:%[0-9a-fA-F][0-9a-fA-F]))+',
|
80 |
-
|
|
|
|
|
81 |
for more_url in more_urls:
|
82 |
all_documents.update(get_documents(more_url, crawl=False))
|
83 |
|
84 |
-
body = soup.get_text()
|
|
|
85 |
|
86 |
if tokenizing == "Don't (use entire body as document)":
|
87 |
document_paragraphs = [body]
|
@@ -109,6 +114,6 @@ if len(document_text.strip()) > 0 and len(query.strip()) > 0 and qa_model and en
|
|
109 |
relevant_url = documents[context]
|
110 |
|
111 |
st.write('Check the answer below...with reference text')
|
112 |
-
st.header("ANSWER: "+answer)
|
113 |
-
st.subheader("REFERENCE: "+context)
|
114 |
-
st.subheader("REFERENCE URL: "+relevant_url)
|
|
|
1 |
+
import openai
|
|
|
|
|
2 |
import requests
|
3 |
+
import streamlit as st
|
4 |
from bs4 import BeautifulSoup
|
5 |
+
from sentence_transformers import CrossEncoder
|
6 |
+
from transformers import pipeline
|
|
|
7 |
|
8 |
all_documents = {}
|
9 |
|
10 |
+
|
11 |
def qa_gpt3(question, context):
|
12 |
print(question, context)
|
13 |
openai.api_key = st.secrets["openai_key"]
|
14 |
|
15 |
response = openai.Completion.create(
|
16 |
+
model="text-davinci-002",
|
17 |
+
prompt=f"Answer given the following context: {context}\n\nQuestion: {question}",
|
18 |
+
temperature=0.7,
|
19 |
+
max_tokens=256,
|
20 |
+
top_p=1,
|
21 |
+
frequency_penalty=0,
|
22 |
+
presence_penalty=0
|
23 |
)
|
24 |
print(response)
|
25 |
return {'answer': response['choices'][0]['text'].strip()}
|
26 |
|
27 |
+
|
28 |
st.title('Document Question Answering System')
|
29 |
|
30 |
qa_model = None
|
|
|
32 |
crawl_urls = st.checkbox('Crawl?', value=False)
|
33 |
|
34 |
document_text = st.text_area(
|
35 |
+
label="Links (Comma separated)", height=100,
|
36 |
+
value='https://www.databricks.com/blog/2022/11/15/values-define-databricks-culture.html, https://databricks.com/product/databricks-runtime-for-machine-learning/faq'
|
37 |
)
|
38 |
query = st.text_input("Query")
|
39 |
|
40 |
qa_option = st.selectbox('Q/A Answerer', ('gpt3', 'a-ware/bart-squadv2'))
|
41 |
+
tokenizing = st.selectbox('How to Tokenize',
|
42 |
+
("Don't (use entire body as document)", 'Newline (split by newline character)', 'Combo'))
|
43 |
|
44 |
if qa_option == 'gpt3':
|
45 |
qa_model = qa_gpt3
|
|
|
49 |
|
50 |
encoder = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2')
|
51 |
|
52 |
+
|
53 |
def get_relevent_passage(question, documents):
|
54 |
query_paragraph_list = [(question, para) for para in list(documents.keys()) if len(para.strip()) > 0]
|
55 |
|
|
|
78 |
st.write('Give me a sec, crawling..')
|
79 |
import re
|
80 |
|
81 |
+
more_urls = re.findall('http[s]?://(?:[a-zA-Z]|[0-9]|[$-_@.&+]|[!*\(\),]|(?:%[0-9a-fA-F][0-9a-fA-F]))+',
|
82 |
+
html)
|
83 |
+
more_urls = list(
|
84 |
+
set([m for m in more_urls if m[-4] != '.' and m[-3] != '.' and m.split('/')[:3] == url.split('/')[:3]]))
|
85 |
for more_url in more_urls:
|
86 |
all_documents.update(get_documents(more_url, crawl=False))
|
87 |
|
88 |
+
body = "\n".join([x for x in soup.body.get_text().split('\n') if len(x) > 10])
|
89 |
+
print(body)
|
90 |
|
91 |
if tokenizing == "Don't (use entire body as document)":
|
92 |
document_paragraphs = [body]
|
|
|
114 |
relevant_url = documents[context]
|
115 |
|
116 |
st.write('Check the answer below...with reference text')
|
117 |
+
st.header("ANSWER: " + answer)
|
118 |
+
st.subheader("REFERENCE: " + context)
|
119 |
+
st.subheader("REFERENCE URL: " + relevant_url)
|