profaker commited on
Commit
cc79fc8
·
verified ·
1 Parent(s): 7f5bc2a

Upload 3 files

Browse files
Files changed (3) hide show
  1. app.py +117 -0
  2. header.html +13 -0
  3. requirements.txt +5 -0
app.py ADDED
@@ -0,0 +1,117 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from PIL import Image
3
+ import diffusers
4
+ from diffusers.models import AutoencoderKL
5
+
6
+ vae = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse")
7
+ pipeline = diffusers.DiffusionPipeline.from_pretrained("SG161222/RealVisXL_V4.0", vae=vae).to("cuda")
8
+
9
+
10
+ def read_content(file_path: str) -> str:
11
+ """read the content of target file
12
+ """
13
+ with open(file_path, 'r', encoding='utf-8') as f:
14
+ content = f.read()
15
+
16
+ return content
17
+
18
+
19
+ def predict(prompt, negative_prompt, guidance_scale, num_inference_steps, scheduler, lora, lora_weight):
20
+ pipeline.safety_checker = lambda images, **kwargs: (images, [False] * len(images))
21
+ if lora == "add_detail":
22
+ lora = "profaker/add_detail_lora"
23
+ if lora == "nursing_job":
24
+ lora = "profaker/Nursing_job_lora"
25
+ if lora == "nsfw_POV":
26
+ lora = "profaker/NSFW_POV_lora"
27
+ pipeline.load_lora_weights(lora)
28
+
29
+ scheduler_class_name = scheduler.split("-")[0]
30
+ add_kwargs = {}
31
+ if len(scheduler.split("-")) > 1:
32
+ add_kwargs["use_karras_sigmas"] = True
33
+ if len(scheduler.split("-")) > 2:
34
+ add_kwargs["algorithm_type"] = "sde-dpmsolver++"
35
+ scheduler = getattr(diffusers, scheduler_class_name)
36
+ pipeline.scheduler = scheduler.from_pretrained("emilianJR/epiCRealism", subfolder="scheduler", **add_kwargs)
37
+
38
+ images = pipeline(
39
+ prompt=prompt,
40
+ negative_prompt=negative_prompt,
41
+ num_inference_steps=int(num_inference_steps),
42
+ guidance_scale=guidance_scale,
43
+ cross_attention_kwargs={"scale": lora_weight}
44
+ ).images[0]
45
+ print("Prompt", prompt)
46
+ print("Negative", negative_prompt)
47
+ print("Steps", num_inference_steps)
48
+ print("Scale", guidance_scale)
49
+ print("Scheduler", scheduler)
50
+
51
+ return images
52
+
53
+
54
+ css = '''
55
+ .gradio-container{max-width: 1100px !important}
56
+ #image_upload{min-height:400px}
57
+ #image_upload [data-testid="image"], #image_upload [data-testid="image"] > div{min-height: 400px}
58
+ #mask_radio .gr-form{background:transparent; border: none}
59
+ #word_mask{margin-top: .75em !important}
60
+ #word_mask textarea:disabled{opacity: 0.3}
61
+ .footer {margin-bottom: 45px;margin-top: 35px;text-align: center;border-bottom: 1px solid #e5e5e5}
62
+ .footer>p {font-size: .8rem; display: inline-block; padding: 0 10px;transform: translateY(10px);background: white}
63
+ .dark .footer {border-color: #303030}
64
+ .dark .footer>p {background: #0b0f19}
65
+ .acknowledgments h4{margin: 1.25em 0 .25em 0;font-weight: bold;font-size: 115%}
66
+ #image_upload .touch-none{display: flex}
67
+ @keyframes spin {
68
+ from {
69
+ transform: rotate(0deg);
70
+ }
71
+ to {
72
+ transform: rotate(360deg);
73
+ }
74
+ }
75
+
76
+ #prompt-container{margin-top:-18px;}
77
+ #prompt-container .form{border-top-left-radius: 0;border-top-right-radius: 0}
78
+ '''
79
+
80
+ image_blocks = gr.Blocks(css=css, elem_id="total-container")
81
+ with image_blocks as demo:
82
+ gr.HTML(read_content("header.html"))
83
+ with gr.Row():
84
+ with gr.Column():
85
+ with gr.Row(elem_id="prompt-container", equal_height=True):
86
+ with gr.Row():
87
+ prompt = gr.Textbox(placeholder="Your prompt", show_label=False, elem_id="prompt", lines=5)
88
+
89
+ with gr.Accordion(label="Advanced Settings", open=False):
90
+ with gr.Row(equal_height=True):
91
+ guidance_scale = gr.Number(value=7.5, minimum=1.0, maximum=20.0, step=0.1, label="guidance_scale")
92
+ steps = gr.Number(value=40, minimum=0, maximum=100, step=1, label="steps")
93
+ with gr.Row(equal_height=True):
94
+ negative_prompt = gr.Textbox(label="negative_prompt", placeholder="Your negative prompt",
95
+ info="what you don't want to see in the image")
96
+ with gr.Row(equal_height=True):
97
+ schedulers = ["DEISMultistepScheduler", "HeunDiscreteScheduler", "EulerDiscreteScheduler",
98
+ "DPMSolverMultistepScheduler", "DPMSolverMultistepScheduler-Karras",
99
+ "DPMSolverMultistepScheduler-Karras-SDE"]
100
+ scheduler = gr.Dropdown(label="Schedulers", choices=schedulers,
101
+ value="DPMSolverMultistepScheduler-Karras")
102
+ with gr.Row(equal_height=True):
103
+ lora = ['add_detail', 'nursing_job', 'nsfw_POV']
104
+ lora = gr.Dropdown(label='Lora', choices=lora, value="add-detail")
105
+ lora_weight = [-1, -0.5, 0, 0.5, 1]
106
+ lora_weight = gr.Dropdown(label="Lora Weights", choices=lora_weight, value=0.5)
107
+ with gr.Row(equal_height=True):
108
+ btn = gr.Button("Generate", elem_id="run_button")
109
+
110
+ with gr.Column():
111
+ image_out = gr.Image(label="Output", elem_id="output-img", height=512, width=512)
112
+ btn.click(fn=predict, inputs=[prompt, negative_prompt, guidance_scale, steps, scheduler, lora, lora_weight],
113
+ outputs=[image_out], api_name='run')
114
+ prompt.submit(fn=predict, inputs=[prompt, negative_prompt, guidance_scale, steps, scheduler, lora, lora_weight],
115
+ outputs=[image_out])
116
+
117
+ image_blocks.queue(max_size=25, api_open=True).launch(show_api=True, debug=True)
header.html ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <div style="text-align: center; max-width: 650px; margin: 0 auto;">
2
+ <div style="
3
+ display: inline-flex;
4
+ gap: 0.8rem;
5
+ font-size: 1.75rem;
6
+ justify-content: center;
7
+ margin-bottom: 10px;
8
+ ">
9
+ <h1 style="font-weight: 900; align-items: center; margin-bottom: 7px; margin-top: 20px;">
10
+ <b>Profaker⛥</b>
11
+ </h1>
12
+ </div>
13
+ </div>
requirements.txt ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ diffusers
2
+ transformers
3
+ accelerate
4
+ peft
5
+ gradio==4.31.0