|
_A='countries' |
|
import gradio as gr,numpy as np,pandas as pd |
|
from nltk.corpus import stopwords |
|
from nltk.tokenize import word_tokenize |
|
from nltk.stem.wordnet import WordNetLemmatizer |
|
import nltk |
|
nltk.download('punkt') |
|
nltk.download('stopwords') |
|
nltk.download('wordnet') |
|
df=pd.read_csv('Hotel_Reviews.csv') |
|
df[_A]=df.Hotel_Address.apply(lambda x:x.split(' ')[-1]) |
|
def Input_your_destination_and_description(location,description): |
|
M='Average_Score';L='Hotel_Name';K=False;J='similarity';D=True;C='Tags';B=description;df[_A]=df[_A].str.lower();df[C]=df[C].str.lower();B=B.lower();N=word_tokenize(B);E=stopwords.words('english');F=WordNetLemmatizer();O={A for A in N if not A in E};G=set() |
|
for P in O:G.add(F.lemmatize(P)) |
|
A=df[df[_A]==location.lower()];A=A.set_index(np.arange(A.shape[0]));H=[] |
|
for Q in range(A.shape[0]): |
|
R=word_tokenize(A[C][Q]);S={A for A in R if not A in E};I=set() |
|
for T in S:I.add(F.lemmatize(T)) |
|
U=I.intersection(G);H.append(len(U)) |
|
A[J]=H;A=A.sort_values(by=J,ascending=K);A.drop_duplicates(subset=L,keep='first',inplace=D);A.sort_values(M,ascending=K,inplace=D);A.reset_index(inplace=D);return A[[L,M,'Hotel_Address']].head(10) |
|
inputs=[gr.inputs.Textbox(label='Location'),gr.inputs.Textbox(label='Purpose of Travel')] |
|
outputs=gr.outputs.Dataframe(label='Hotel Recommendations',type='pandas') |
|
gr.Interface(fn=Input_your_destination_and_description,inputs=inputs,outputs=outputs,theme=gr.themes.Default(primary_hue='slate')).launch() |