Spaces:
Paused
Paused
import numpy as np | |
import gradio as gr | |
import requests | |
import time | |
import json | |
import base64 | |
import os | |
from PIL import Image | |
from io import BytesIO | |
class Prodia: | |
def __init__(self, api_key, base=None): | |
self.base = base or "https://api.prodia.com/v1" | |
self.headers = { | |
"X-Prodia-Key": api_key | |
} | |
def generate(self, params): | |
response = self._post(f"{self.base}/sdxl/generate", params) | |
return response.json() | |
def get_job(self, job_id): | |
response = self._get(f"{self.base}/job/{job_id}") | |
return response.json() | |
def wait(self, job): | |
job_result = job | |
while job_result['status'] not in ['succeeded', 'failed']: | |
time.sleep(0.25) | |
job_result = self.get_job(job['job']) | |
return job_result | |
def list_models(self): | |
response = self._get(f"{self.base}/sdxl/models") | |
return response.json() | |
def list_samplers(self): | |
response = self._get(f"{self.base}/sdxl/samplers") | |
return response.json() | |
def generate_v2(self, config): | |
response = self._post("https://inference.prodia.com/v2/job", {"type": "v2.job.sdxl.txt2img", "config": config}, v2=True) | |
return Image.open(BytesIO(response.content)).convert("RGBA") | |
def _post(self, url, params, v2=False): | |
headers = { | |
**self.headers, | |
"Content-Type": "application/json" | |
} | |
if v2: | |
headers['Authorization'] = f"Bearer {os.getenv('API_KEY')}" | |
response = requests.post(url, headers=headers, data=json.dumps(params)) | |
if response.status_code != 200: | |
raise Exception(f"Bad Prodia Response: {response.status_code}") | |
return response | |
def _get(self, url): | |
response = requests.get(url, headers=self.headers) | |
if response.status_code != 200: | |
raise Exception(f"Bad Prodia Response: {response.status_code}") | |
return response | |
def image_to_base64(image_path): | |
# Open the image with PIL | |
with Image.open(image_path) as image: | |
# Convert the image to bytes | |
buffered = BytesIO() | |
image.save(buffered, format="PNG") # You can change format to PNG if needed | |
# Encode the bytes to base64 | |
img_str = base64.b64encode(buffered.getvalue()) | |
return img_str.decode('utf-8') # Convert bytes to string | |
prodia_client = Prodia(api_key=os.getenv("PRODIA_API_KEY")) | |
def flip_text(prompt, negative_prompt, model, steps, sampler, cfg_scale, resolution, seed): | |
width, height = resolution.split("x") | |
config_without_model_and_sampler = { | |
"prompt": prompt, | |
"negative_prompt": negative_prompt, | |
"steps": steps, | |
"cfg_scale": cfg_scale, | |
"width": int(width), | |
"height": int(height), | |
"seed": seed | |
} | |
if model == "sd_xl_base_1.0.safetensors [be9edd61]": | |
return prodia_client.generate_v2(config_without_model_and_sampler) | |
result = prodia_client.generate({ | |
**config_without_model_and_sampler, | |
"model": model, | |
"sampler": sampler | |
}) | |
job = prodia_client.wait(result) | |
return job["imageUrl"] | |
css = """ | |
#generate { | |
height: 100%; | |
} | |
""" | |
list_resolutions = [ | |
"1024x1024", | |
"1152x896", | |
"1216x832", | |
"1344x768", | |
"1536x640", | |
"640x1536", | |
"768x1344", | |
"832x1216" | |
] | |
with gr.Blocks(css=css) as demo: | |
with gr.Row(): | |
with gr.Column(scale=6): | |
model = gr.Dropdown(interactive=True,value="sd_xl_base_1.0.safetensors [be9edd61]", show_label=True, label="Stable Diffusion Checkpoint", choices=prodia_client.list_models()) | |
with gr.Column(scale=1): | |
gr.Markdown(elem_id="powered-by-prodia", value="AUTOMATIC1111 Stable Diffusion Web UI for SDXL V1.0.<br>Powered by [Prodia](https://prodia.com).") | |
with gr.Tab("txt2img"): | |
with gr.Row(): | |
with gr.Column(scale=6, min_width=600): | |
prompt = gr.Textbox("space warrior, beautiful, female, ultrarealistic, soft lighting, 8k", placeholder="Prompt", show_label=False, lines=3) | |
negative_prompt = gr.Textbox(placeholder="Negative Prompt", show_label=False, lines=3, value="3d, cartoon, anime, (deformed eyes, nose, ears, nose), bad anatomy, ugly") | |
with gr.Column(): | |
text_button = gr.Button("Generate", variant='primary', elem_id="generate") | |
with gr.Row(): | |
with gr.Column(scale=3): | |
with gr.Tab("Generation"): | |
with gr.Row(): | |
with gr.Column(scale=1): | |
sampler = gr.Dropdown(value="DPM++ 2M Karras", show_label=True, label="Sampling Method", choices=prodia_client.list_samplers()) | |
with gr.Column(scale=1): | |
steps = gr.Slider(label="Sampling Steps", minimum=1, maximum=25, value=20, step=1) | |
with gr.Row(): | |
with gr.Column(scale=1): | |
resolution = gr.Dropdown(value="1024x1024", show_label=True, label="Resolution", choices=list_resolutions) | |
with gr.Column(scale=1): | |
batch_size = gr.Slider(label="Batch Size", maximum=1, value=1) | |
batch_count = gr.Slider(label="Batch Count", maximum=1, value=1) | |
cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, value=7, step=1) | |
seed = gr.Number(label="Seed", value=-1) | |
with gr.Column(scale=2): | |
image_output = gr.Image(value="https://cdn-uploads.huggingface.co/production/uploads/noauth/XWJyh9DhMGXrzyRJk7SfP.png") | |
text_button.click(flip_text, inputs=[prompt, negative_prompt, model, steps, sampler, cfg_scale, resolution, seed], outputs=image_output) | |
demo.queue(default_concurrency_limit=10, max_size=32, api_open=False).launch(max_threads=128) | |