Update src/streamlit_app.py
Browse files- src/streamlit_app.py +16 -8
src/streamlit_app.py
CHANGED
|
@@ -7,6 +7,12 @@ forums](https://discuss.streamlit.io).
|
|
| 7 |
|
| 8 |
In the meantime, below is an example of what you can do with just a few lines of code:
|
| 9 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
|
| 11 |
import streamlit as st
|
| 12 |
import torch
|
|
@@ -24,9 +30,11 @@ from lime.lime_image import LimeImageExplainer
|
|
| 24 |
from skimage.segmentation import mark_boundaries
|
| 25 |
import shap
|
| 26 |
from shap import GradientExplainer
|
|
|
|
| 27 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 28 |
num_classes = 4
|
| 29 |
image_size = (224, 224)
|
|
|
|
| 30 |
# Define CNN Model
|
| 31 |
class MyModel(nn.Module):
|
| 32 |
def __init__(self, num_classes=4):
|
|
@@ -36,27 +44,22 @@ class MyModel(nn.Module):
|
|
| 36 |
nn.BatchNorm2d(64),
|
| 37 |
nn.ReLU(inplace=True),
|
| 38 |
nn.MaxPool2d(kernel_size=2, stride=2),
|
| 39 |
-
|
| 40 |
nn.Conv2d(64, 128, kernel_size=3, padding=1),
|
| 41 |
nn.BatchNorm2d(128),
|
| 42 |
nn.ReLU(inplace=True),
|
| 43 |
nn.MaxPool2d(kernel_size=2, stride=2),
|
| 44 |
-
|
| 45 |
nn.Conv2d(128, 128, kernel_size=3, padding=1),
|
| 46 |
nn.BatchNorm2d(128),
|
| 47 |
nn.ReLU(inplace=True),
|
| 48 |
nn.MaxPool2d(kernel_size=2, stride=2),
|
| 49 |
-
|
| 50 |
nn.Conv2d(128, 256, kernel_size=3, padding=1),
|
| 51 |
nn.BatchNorm2d(256),
|
| 52 |
nn.ReLU(inplace=True),
|
| 53 |
nn.MaxPool2d(kernel_size=2, stride=2),
|
| 54 |
-
|
| 55 |
nn.Conv2d(256, 256, kernel_size=3, padding=1),
|
| 56 |
nn.BatchNorm2d(256),
|
| 57 |
nn.ReLU(inplace=True),
|
| 58 |
nn.MaxPool2d(kernel_size=2, stride=2),
|
| 59 |
-
|
| 60 |
nn.Conv2d(256, 512, kernel_size=3, padding=1),
|
| 61 |
nn.BatchNorm2d(512),
|
| 62 |
nn.ReLU(inplace=True),
|
|
@@ -67,21 +70,26 @@ class MyModel(nn.Module):
|
|
| 67 |
nn.Linear(512 * 3 * 3, 1024),
|
| 68 |
nn.ReLU(inplace=True),
|
| 69 |
nn.Dropout(0.25),
|
| 70 |
-
|
| 71 |
nn.Linear(1024, 512),
|
| 72 |
nn.ReLU(inplace=True),
|
| 73 |
nn.Dropout(0.25),
|
| 74 |
-
|
| 75 |
nn.Linear(512, num_classes)
|
| 76 |
)
|
| 77 |
def forward(self, x):
|
| 78 |
x = self.features(x)
|
| 79 |
x = self.classifier(x)
|
| 80 |
return x
|
|
|
|
| 81 |
# Load model
|
| 82 |
model = MyModel(num_classes=num_classes).to(device)
|
| 83 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 84 |
model.eval()
|
|
|
|
| 85 |
# Label dictionary
|
| 86 |
label_dict = {0: "Meningioma", 1: "Glioma", 2: "No Tumor", 3: "Pituitary"}
|
| 87 |
# Preprocessing
|
|
|
|
| 7 |
|
| 8 |
In the meantime, below is an example of what you can do with just a few lines of code:
|
| 9 |
"""
|
| 10 |
+
import os
|
| 11 |
+
|
| 12 |
+
# Fix for Hugging Face permission error and torch watcher bug
|
| 13 |
+
os.environ["STREAMLIT_HOME"] = "./.streamlit"
|
| 14 |
+
os.environ["STREAMLIT_WATCH_DISABLE"] = "true"
|
| 15 |
+
os.makedirs("./.streamlit", exist_ok=True)
|
| 16 |
|
| 17 |
import streamlit as st
|
| 18 |
import torch
|
|
|
|
| 30 |
from skimage.segmentation import mark_boundaries
|
| 31 |
import shap
|
| 32 |
from shap import GradientExplainer
|
| 33 |
+
|
| 34 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 35 |
num_classes = 4
|
| 36 |
image_size = (224, 224)
|
| 37 |
+
|
| 38 |
# Define CNN Model
|
| 39 |
class MyModel(nn.Module):
|
| 40 |
def __init__(self, num_classes=4):
|
|
|
|
| 44 |
nn.BatchNorm2d(64),
|
| 45 |
nn.ReLU(inplace=True),
|
| 46 |
nn.MaxPool2d(kernel_size=2, stride=2),
|
|
|
|
| 47 |
nn.Conv2d(64, 128, kernel_size=3, padding=1),
|
| 48 |
nn.BatchNorm2d(128),
|
| 49 |
nn.ReLU(inplace=True),
|
| 50 |
nn.MaxPool2d(kernel_size=2, stride=2),
|
|
|
|
| 51 |
nn.Conv2d(128, 128, kernel_size=3, padding=1),
|
| 52 |
nn.BatchNorm2d(128),
|
| 53 |
nn.ReLU(inplace=True),
|
| 54 |
nn.MaxPool2d(kernel_size=2, stride=2),
|
|
|
|
| 55 |
nn.Conv2d(128, 256, kernel_size=3, padding=1),
|
| 56 |
nn.BatchNorm2d(256),
|
| 57 |
nn.ReLU(inplace=True),
|
| 58 |
nn.MaxPool2d(kernel_size=2, stride=2),
|
|
|
|
| 59 |
nn.Conv2d(256, 256, kernel_size=3, padding=1),
|
| 60 |
nn.BatchNorm2d(256),
|
| 61 |
nn.ReLU(inplace=True),
|
| 62 |
nn.MaxPool2d(kernel_size=2, stride=2),
|
|
|
|
| 63 |
nn.Conv2d(256, 512, kernel_size=3, padding=1),
|
| 64 |
nn.BatchNorm2d(512),
|
| 65 |
nn.ReLU(inplace=True),
|
|
|
|
| 70 |
nn.Linear(512 * 3 * 3, 1024),
|
| 71 |
nn.ReLU(inplace=True),
|
| 72 |
nn.Dropout(0.25),
|
|
|
|
| 73 |
nn.Linear(1024, 512),
|
| 74 |
nn.ReLU(inplace=True),
|
| 75 |
nn.Dropout(0.25),
|
|
|
|
| 76 |
nn.Linear(512, num_classes)
|
| 77 |
)
|
| 78 |
def forward(self, x):
|
| 79 |
x = self.features(x)
|
| 80 |
x = self.classifier(x)
|
| 81 |
return x
|
| 82 |
+
|
| 83 |
# Load model
|
| 84 |
model = MyModel(num_classes=num_classes).to(device)
|
| 85 |
+
try:
|
| 86 |
+
model.load_state_dict(torch.load("brainCNNpytorch_model", map_location=torch.device('cpu')))
|
| 87 |
+
except FileNotFoundError:
|
| 88 |
+
st.error("Model file 'brainCNNpytorch_model' not found. Please upload the file correctly.")
|
| 89 |
+
st.stop()
|
| 90 |
+
|
| 91 |
model.eval()
|
| 92 |
+
|
| 93 |
# Label dictionary
|
| 94 |
label_dict = {0: "Meningioma", 1: "Glioma", 2: "No Tumor", 3: "Pituitary"}
|
| 95 |
# Preprocessing
|