Update src/streamlit_app.py
Browse files- src/streamlit_app.py +162 -30
src/streamlit_app.py
CHANGED
|
@@ -1,8 +1,3 @@
|
|
| 1 |
-
import altair as alt
|
| 2 |
-
import numpy as np
|
| 3 |
-
import pandas as pd
|
| 4 |
-
import streamlit as st
|
| 5 |
-
|
| 6 |
"""
|
| 7 |
# Welcome to Streamlit!
|
| 8 |
|
|
@@ -13,28 +8,165 @@ forums](https://discuss.streamlit.io).
|
|
| 13 |
In the meantime, below is an example of what you can do with just a few lines of code:
|
| 14 |
"""
|
| 15 |
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
"""
|
| 2 |
# Welcome to Streamlit!
|
| 3 |
|
|
|
|
| 8 |
In the meantime, below is an example of what you can do with just a few lines of code:
|
| 9 |
"""
|
| 10 |
|
| 11 |
+
import streamlit as st
|
| 12 |
+
import torch
|
| 13 |
+
import torch.nn as nn
|
| 14 |
+
import torch.nn.functional as F
|
| 15 |
+
import torchvision.transforms as transforms
|
| 16 |
+
from PIL import Image as Img
|
| 17 |
+
import numpy as np
|
| 18 |
+
import cv2
|
| 19 |
+
import matplotlib.pyplot as plt
|
| 20 |
+
from pytorch_grad_cam import GradCAM
|
| 21 |
+
from pytorch_grad_cam.utils.model_targets import ClassifierOutputTarget
|
| 22 |
+
from pytorch_grad_cam.utils.image import show_cam_on_image
|
| 23 |
+
from lime.lime_image import LimeImageExplainer
|
| 24 |
+
from skimage.segmentation import mark_boundaries
|
| 25 |
+
import shap
|
| 26 |
+
from shap import GradientExplainer
|
| 27 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 28 |
+
num_classes = 4
|
| 29 |
+
image_size = (224, 224)
|
| 30 |
+
# Define CNN Model
|
| 31 |
+
class MyModel(nn.Module):
|
| 32 |
+
def __init__(self, num_classes=4):
|
| 33 |
+
super(MyModel, self).__init__()
|
| 34 |
+
self.features = nn.Sequential(
|
| 35 |
+
nn.Conv2d(3, 64, kernel_size=3, padding=1),
|
| 36 |
+
nn.BatchNorm2d(64),
|
| 37 |
+
nn.ReLU(inplace=True),
|
| 38 |
+
nn.MaxPool2d(kernel_size=2, stride=2),
|
| 39 |
+
|
| 40 |
+
nn.Conv2d(64, 128, kernel_size=3, padding=1),
|
| 41 |
+
nn.BatchNorm2d(128),
|
| 42 |
+
nn.ReLU(inplace=True),
|
| 43 |
+
nn.MaxPool2d(kernel_size=2, stride=2),
|
| 44 |
+
|
| 45 |
+
nn.Conv2d(128, 128, kernel_size=3, padding=1),
|
| 46 |
+
nn.BatchNorm2d(128),
|
| 47 |
+
nn.ReLU(inplace=True),
|
| 48 |
+
nn.MaxPool2d(kernel_size=2, stride=2),
|
| 49 |
+
|
| 50 |
+
nn.Conv2d(128, 256, kernel_size=3, padding=1),
|
| 51 |
+
nn.BatchNorm2d(256),
|
| 52 |
+
nn.ReLU(inplace=True),
|
| 53 |
+
nn.MaxPool2d(kernel_size=2, stride=2),
|
| 54 |
+
|
| 55 |
+
nn.Conv2d(256, 256, kernel_size=3, padding=1),
|
| 56 |
+
nn.BatchNorm2d(256),
|
| 57 |
+
nn.ReLU(inplace=True),
|
| 58 |
+
nn.MaxPool2d(kernel_size=2, stride=2),
|
| 59 |
+
|
| 60 |
+
nn.Conv2d(256, 512, kernel_size=3, padding=1),
|
| 61 |
+
nn.BatchNorm2d(512),
|
| 62 |
+
nn.ReLU(inplace=True),
|
| 63 |
+
nn.MaxPool2d(kernel_size=2, stride=2),
|
| 64 |
+
)
|
| 65 |
+
self.classifier = nn.Sequential(
|
| 66 |
+
nn.Flatten(),
|
| 67 |
+
nn.Linear(512 * 3 * 3, 1024),
|
| 68 |
+
nn.ReLU(inplace=True),
|
| 69 |
+
nn.Dropout(0.25),
|
| 70 |
+
|
| 71 |
+
nn.Linear(1024, 512),
|
| 72 |
+
nn.ReLU(inplace=True),
|
| 73 |
+
nn.Dropout(0.25),
|
| 74 |
+
|
| 75 |
+
nn.Linear(512, num_classes)
|
| 76 |
+
)
|
| 77 |
+
def forward(self, x):
|
| 78 |
+
x = self.features(x)
|
| 79 |
+
x = self.classifier(x)
|
| 80 |
+
return x
|
| 81 |
+
# Load model
|
| 82 |
+
model = MyModel(num_classes=num_classes).to(device)
|
| 83 |
+
model.load_state_dict(torch.load("brainCNNpytorch_model", map_location=torch.device('cpu')))
|
| 84 |
+
model.eval()
|
| 85 |
+
# Label dictionary
|
| 86 |
+
label_dict = {0: "Meningioma", 1: "Glioma", 2: "No Tumor", 3: "Pituitary"}
|
| 87 |
+
# Preprocessing
|
| 88 |
+
def preprocess_image(image):
|
| 89 |
+
transform = transforms.Compose([
|
| 90 |
+
transforms.Resize((224, 224)),
|
| 91 |
+
transforms.ToTensor(),
|
| 92 |
+
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
| 93 |
+
])
|
| 94 |
+
return transform(image).unsqueeze(0).to(device)
|
| 95 |
+
# Grad-CAM
|
| 96 |
+
def visualize_grad_cam(image, model, target_layer, label):
|
| 97 |
+
img_np = np.array(image) / 255.0
|
| 98 |
+
img_np = cv2.resize(img_np, (224, 224))
|
| 99 |
+
img_tensor = preprocess_image(image)
|
| 100 |
+
with torch.no_grad():
|
| 101 |
+
output = model(img_tensor)
|
| 102 |
+
_, target_index = torch.max(output, 1)
|
| 103 |
+
cam = GradCAM(model=model, target_layers=[target_layer])
|
| 104 |
+
grayscale_cam = cam(input_tensor=img_tensor, targets=[ClassifierOutputTarget(target_index.item())])[0]
|
| 105 |
+
grayscale_cam_resized = cv2.resize(grayscale_cam, (224, 224))
|
| 106 |
+
visualization = show_cam_on_image(img_np, grayscale_cam_resized, use_rgb=True)
|
| 107 |
+
return visualization
|
| 108 |
+
# LIME
|
| 109 |
+
def model_predict(images):
|
| 110 |
+
preprocessed_images = [preprocess_image(Img.fromarray(img)) for img in images]
|
| 111 |
+
images_tensor = torch.cat(preprocessed_images).to(device)
|
| 112 |
+
with torch.no_grad():
|
| 113 |
+
logits = model(images_tensor)
|
| 114 |
+
probabilities = F.softmax(logits, dim=1)
|
| 115 |
+
return probabilities.cpu().numpy()
|
| 116 |
+
def visualize_lime(image):
|
| 117 |
+
explainer = LimeImageExplainer()
|
| 118 |
+
original_image = np.array(image)
|
| 119 |
+
explanation = explainer.explain_instance(original_image, model_predict, top_labels=3, hide_color=0, num_samples=100)
|
| 120 |
+
top_label = explanation.top_labels[0]
|
| 121 |
+
temp, mask = explanation.get_image_and_mask(label=top_label, positive_only=True, num_features=10, hide_rest=False)
|
| 122 |
+
return mark_boundaries(temp / 255.0, mask)
|
| 123 |
+
# SHAP
|
| 124 |
+
def visualize_shap(image):
|
| 125 |
+
img_tensor = preprocess_image(image).to(device)
|
| 126 |
+
if img_tensor.shape[1] == 1:
|
| 127 |
+
img_tensor = img_tensor.expand(-1, 3, -1, -1)
|
| 128 |
+
background = torch.cat([img_tensor] * 10, dim=0)
|
| 129 |
+
explainer = shap.GradientExplainer(model, background)
|
| 130 |
+
shap_values = explainer.shap_values(img_tensor)
|
| 131 |
+
# Prepare image
|
| 132 |
+
img_numpy = img_tensor.squeeze().permute(1, 2, 0).cpu().numpy()
|
| 133 |
+
shap_values = np.array(shap_values[0]).squeeze()
|
| 134 |
+
shap_values = shap_values / np.abs(shap_values).max() if np.abs(shap_values).max() != 0 else shap_values
|
| 135 |
+
shap_values = np.transpose(shap_values, (1, 2, 0))
|
| 136 |
+
# Plotting
|
| 137 |
+
fig, ax = plt.subplots(figsize=(5, 5))
|
| 138 |
+
ax.imshow(img_numpy)
|
| 139 |
+
ax.imshow(shap_values, cmap='jet', alpha=0.5)
|
| 140 |
+
ax.axis('off')
|
| 141 |
+
plt.tight_layout()
|
| 142 |
+
return fig
|
| 143 |
+
# Streamlit UI
|
| 144 |
+
st.title("Brain Tumor Classification with Grad-CAM, LIME, and SHAP")
|
| 145 |
+
uploaded_file = st.file_uploader("Upload an MRI Image", type=["jpg", "png", "jpeg"])
|
| 146 |
+
if uploaded_file is not None:
|
| 147 |
+
image = Img.open(uploaded_file).convert("RGB")
|
| 148 |
+
st.image(image, caption="Uploaded Image", use_container_width=True)
|
| 149 |
+
if st.button("Classify & Visualize"):
|
| 150 |
+
image_tensor = preprocess_image(image)
|
| 151 |
+
with torch.no_grad():
|
| 152 |
+
output = model(image_tensor)
|
| 153 |
+
_, predicted = torch.max(output, 1)
|
| 154 |
+
label = label_dict[predicted.item()]
|
| 155 |
+
st.write(f"### Prediction: {label}")
|
| 156 |
+
# Grad-CAM
|
| 157 |
+
target_layer = model.features[16] # Last Conv layer
|
| 158 |
+
grad_cam_img = visualize_grad_cam(image, model, target_layer, label)
|
| 159 |
+
# LIME
|
| 160 |
+
lime_img = visualize_lime(image)
|
| 161 |
+
# SHAP is shown directly in Streamlit
|
| 162 |
+
col1, col2, col3 = st.columns(3)
|
| 163 |
+
with col1:
|
| 164 |
+
st.subheader("Grad-CAM")
|
| 165 |
+
st.image(grad_cam_img, caption="Grad-CAM", use_container_width=True)
|
| 166 |
+
with col2:
|
| 167 |
+
st.subheader("LIME")
|
| 168 |
+
st.image(lime_img, caption="LIME Explanation", use_container_width=True)
|
| 169 |
+
with col3:
|
| 170 |
+
st.subheader("SHAP")
|
| 171 |
+
fig = visualize_shap(image)
|
| 172 |
+
st.pyplot(fig)
|