sayakpaul's picture
sayakpaul HF staff
Update app.py
1c951f1
raw
history blame
1.57 kB
import gradio as gr
import tensorflow as tf
import tensorflow_hub as hub
from PIL import Image
import utils
_RESOLUTION = 224
_MODEL_PATH = "gs://cait-tf/cait_xxs24_224"
def get_model() -> tf.keras.Model:
"""Initiates a tf.keras.Model from TF-Hub."""
inputs = tf.keras.Input((_RESOLUTION, _RESOLUTION, 3))
hub_module = hub.KerasLayer(_MODEL_PATH)
logits, sa_atn_score_dict, ca_atn_score_dict = hub_module(inputs)
return tf.keras.Model(
inputs, [logits, sa_atn_score_dict, ca_atn_score_dict]
)
_MODEL = get_model()
def show_plot(image):
"""Function to be called when user hits submit on the UI."""
_, preprocessed_image = utils.preprocess_image(
image, _RESOLUTION
)
_, _, ca_atn_score_dict = _MODEL.predict(preprocessed_image)
result_first_block = utils.get_cls_attention_map(
image, ca_atn_score_dict, block_key="ca_ffn_block_0_att"
)
result_second_block = utils.get_cls_attention_map(
image, ca_atn_score_dict, block_key="ca_ffn_block_1_att"
)
return Image.fromarray(result_first_block), Image.fromarray(
result_second_block
)
title = "Generate Class Attention Plots"
article = "Class attention maps as investigated in [Going deeper with Image Transformers](https://arxiv.org/abs/2103.17239) (Touvron et al.)."
iface = gr.Interface(
show_plot,
inputs=gr.inputs.Image(type="pil", label="Input Image"),
outputs="image",
title=title,
article=article,
allow_flagging="never",
examples=[["./butterfly.jpg"]],
)
iface.launch()