Spaces:
Runtime error
Runtime error
Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from huggingface_hub.keras_mixin import from_pretrained_keras
|
3 |
+
from PIL import Image
|
4 |
+
|
5 |
+
import utils
|
6 |
+
|
7 |
+
_MODEL = from_pretrained_keras("probing-vits/vit_b16_patch16_224_i21k_i1k")
|
8 |
+
|
9 |
+
|
10 |
+
def show_rollout(image):
|
11 |
+
_, preprocessed_image = utils.preprocess_image(image, "original_vit")
|
12 |
+
_, attention_scores_dict = _MODEL.predict(preprocessed_image)
|
13 |
+
result = utils.attention_rollout_map(
|
14 |
+
image, attention_scores_dict, "original_vit"
|
15 |
+
)
|
16 |
+
return Image.fromarray(result)
|
17 |
+
|
18 |
+
|
19 |
+
title = "Generate Attention Rollout Plots"
|
20 |
+
article = "Attention Rollout was proposed by [Abnar et al.](https://arxiv.org/abs/2005.00928) to quantify the information that flows through self-attention layers. In the original ViT paper ([Dosovitskiy et al.](https://arxiv.org/abs/2010.11929)), the authors use it to investigate the representations learned by ViTs. The model used in the backend is a ViT B-16 model. For more details about it, refer to [this notebook](https://github.com/sayakpaul/probing-vits/blob/main/notebooks/load-jax-weights-vitb16.ipynb)."
|
21 |
+
|
22 |
+
iface = gr.Interface(
|
23 |
+
show_rollout,
|
24 |
+
gr.inputs.Image(type="pil", label="Input Image"),
|
25 |
+
"image",
|
26 |
+
title=title,
|
27 |
+
article=article,
|
28 |
+
allow_flagging="never",
|
29 |
+
)
|
30 |
+
iface.launch(share=True)
|