Spaces:
Sleeping
Sleeping
import streamlit as st | |
import tensorflow as tf | |
from PIL import Image | |
import numpy as np | |
import io | |
from util import generate_caption | |
# Function to load the model | |
# Streamlit app | |
st.title("Image Caption Generator") | |
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg"]) | |
if uploaded_file is not None: | |
image = Image.open(uploaded_file) | |
image = image.resize((224, 224)) | |
st.image(image, caption='Uploaded Image', use_column_width=True) | |
st.write("") | |
st.write("Generating caption...") | |
caption = generate_caption(image) | |
st.write(f"Caption: {caption}") | |
# Add some information about the app | |
st.sidebar.header("About") | |
st.sidebar.info("This app uses a Deep Learning model(RNN model) along with VGG16 model(feature extractor) to generate captions for uploaded images.") | |
st.sidebar.info("Upload an image to get started!") | |
st.sidebar.info("The model is trained on Flickr8k dataset.") | |
st.sidebar.info("By Priyesh Gawali") | |
st.sidebar.markdown("[Github repository](https://github.com/Roronoa-17/Image_Caption_Generator.git)") |