vit-bert-ocr / app.py
priyank-m's picture
Create app.py
11bb2ca
raw
history blame
787 Bytes
from transformers import ViTFeatureExtractor, BertTokenizer, VisionEncoderDecoderModel, AutoTokenizer
import gradio as gr
model=VisionEncoderDecoderModel.from_pretrained("priyank-m/vit-bert-OCR")
tokenizer = AutoTokenizer.from_pretrained("bert-base-multilingual-cased")
feature_extractor = ViTFeatureExtractor.from_pretrained("google/vit-large-patch32-384")
def run_ocr(image):
pixel_values = feature_extractor(image, return_tensors="pt").pixel_values
# autoregressively generate caption (uses greedy decoding by default)
generated_ids = model.generate(pixel_values, max_new_tokens=50)
generated_text = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
return generated_text
demo = gr.Interface(fn=run_ocr, inputs="image", outputs="text")
demo.launch()