Spaces:
Sleeping
Sleeping
PKUWilliamYang
commited on
Commit
·
8059447
1
Parent(s):
5e97cdf
Update vtoonify/model/stylegan/op/conv2d_gradfix.py
Browse files
vtoonify/model/stylegan/op/conv2d_gradfix.py
CHANGED
@@ -1,227 +1,227 @@
|
|
1 |
-
import contextlib
|
2 |
-
import warnings
|
3 |
-
|
4 |
-
import torch
|
5 |
-
from torch import autograd
|
6 |
-
from torch.nn import functional as F
|
7 |
-
|
8 |
-
enabled = True
|
9 |
-
weight_gradients_disabled = False
|
10 |
-
|
11 |
-
|
12 |
-
@contextlib.contextmanager
|
13 |
-
def no_weight_gradients():
|
14 |
-
global weight_gradients_disabled
|
15 |
-
|
16 |
-
old = weight_gradients_disabled
|
17 |
-
weight_gradients_disabled = True
|
18 |
-
yield
|
19 |
-
weight_gradients_disabled = old
|
20 |
-
|
21 |
-
|
22 |
-
def conv2d(input, weight, bias=None, stride=1, padding=0, dilation=1, groups=1):
|
23 |
-
if could_use_op(input):
|
24 |
-
return conv2d_gradfix(
|
25 |
-
transpose=False,
|
26 |
-
weight_shape=weight.shape,
|
27 |
-
stride=stride,
|
28 |
-
padding=padding,
|
29 |
-
output_padding=0,
|
30 |
-
dilation=dilation,
|
31 |
-
groups=groups,
|
32 |
-
).apply(input, weight, bias)
|
33 |
-
|
34 |
-
return F.conv2d(
|
35 |
-
input=input,
|
36 |
-
weight=weight,
|
37 |
-
bias=bias,
|
38 |
-
stride=stride,
|
39 |
-
padding=padding,
|
40 |
-
dilation=dilation,
|
41 |
-
groups=groups,
|
42 |
-
)
|
43 |
-
|
44 |
-
|
45 |
-
def conv_transpose2d(
|
46 |
-
input,
|
47 |
-
weight,
|
48 |
-
bias=None,
|
49 |
-
stride=1,
|
50 |
-
padding=0,
|
51 |
-
output_padding=0,
|
52 |
-
groups=1,
|
53 |
-
dilation=1,
|
54 |
-
):
|
55 |
-
if could_use_op(input):
|
56 |
-
return conv2d_gradfix(
|
57 |
-
transpose=True,
|
58 |
-
weight_shape=weight.shape,
|
59 |
-
stride=stride,
|
60 |
-
padding=padding,
|
61 |
-
output_padding=output_padding,
|
62 |
-
groups=groups,
|
63 |
-
dilation=dilation,
|
64 |
-
).apply(input, weight, bias)
|
65 |
-
|
66 |
-
return F.conv_transpose2d(
|
67 |
-
input=input,
|
68 |
-
weight=weight,
|
69 |
-
bias=bias,
|
70 |
-
stride=stride,
|
71 |
-
padding=padding,
|
72 |
-
output_padding=output_padding,
|
73 |
-
dilation=dilation,
|
74 |
-
groups=groups,
|
75 |
-
)
|
76 |
-
|
77 |
-
|
78 |
-
def could_use_op(input):
|
79 |
-
if (not enabled) or (not torch.backends.cudnn.enabled):
|
80 |
-
return False
|
81 |
-
|
82 |
-
if input.device.type != "cuda":
|
83 |
-
return False
|
84 |
-
|
85 |
-
if any(torch.__version__.startswith(x) for x in ["1.7.", "1.8."]):
|
86 |
-
return True
|
87 |
-
|
88 |
-
warnings.warn(
|
89 |
-
|
90 |
-
)
|
91 |
-
|
92 |
-
return False
|
93 |
-
|
94 |
-
|
95 |
-
def ensure_tuple(xs, ndim):
|
96 |
-
xs = tuple(xs) if isinstance(xs, (tuple, list)) else (xs,) * ndim
|
97 |
-
|
98 |
-
return xs
|
99 |
-
|
100 |
-
|
101 |
-
conv2d_gradfix_cache = dict()
|
102 |
-
|
103 |
-
|
104 |
-
def conv2d_gradfix(
|
105 |
-
transpose, weight_shape, stride, padding, output_padding, dilation, groups
|
106 |
-
):
|
107 |
-
ndim = 2
|
108 |
-
weight_shape = tuple(weight_shape)
|
109 |
-
stride = ensure_tuple(stride, ndim)
|
110 |
-
padding = ensure_tuple(padding, ndim)
|
111 |
-
output_padding = ensure_tuple(output_padding, ndim)
|
112 |
-
dilation = ensure_tuple(dilation, ndim)
|
113 |
-
|
114 |
-
key = (transpose, weight_shape, stride, padding, output_padding, dilation, groups)
|
115 |
-
if key in conv2d_gradfix_cache:
|
116 |
-
return conv2d_gradfix_cache[key]
|
117 |
-
|
118 |
-
common_kwargs = dict(
|
119 |
-
stride=stride, padding=padding, dilation=dilation, groups=groups
|
120 |
-
)
|
121 |
-
|
122 |
-
def calc_output_padding(input_shape, output_shape):
|
123 |
-
if transpose:
|
124 |
-
return [0, 0]
|
125 |
-
|
126 |
-
return [
|
127 |
-
input_shape[i + 2]
|
128 |
-
- (output_shape[i + 2] - 1) * stride[i]
|
129 |
-
- (1 - 2 * padding[i])
|
130 |
-
- dilation[i] * (weight_shape[i + 2] - 1)
|
131 |
-
for i in range(ndim)
|
132 |
-
]
|
133 |
-
|
134 |
-
class Conv2d(autograd.Function):
|
135 |
-
@staticmethod
|
136 |
-
def forward(ctx, input, weight, bias):
|
137 |
-
if not transpose:
|
138 |
-
out = F.conv2d(input=input, weight=weight, bias=bias, **common_kwargs)
|
139 |
-
|
140 |
-
else:
|
141 |
-
out = F.conv_transpose2d(
|
142 |
-
input=input,
|
143 |
-
weight=weight,
|
144 |
-
bias=bias,
|
145 |
-
output_padding=output_padding,
|
146 |
-
**common_kwargs,
|
147 |
-
)
|
148 |
-
|
149 |
-
ctx.save_for_backward(input, weight)
|
150 |
-
|
151 |
-
return out
|
152 |
-
|
153 |
-
@staticmethod
|
154 |
-
def backward(ctx, grad_output):
|
155 |
-
input, weight = ctx.saved_tensors
|
156 |
-
grad_input, grad_weight, grad_bias = None, None, None
|
157 |
-
|
158 |
-
if ctx.needs_input_grad[0]:
|
159 |
-
p = calc_output_padding(
|
160 |
-
input_shape=input.shape, output_shape=grad_output.shape
|
161 |
-
)
|
162 |
-
grad_input = conv2d_gradfix(
|
163 |
-
transpose=(not transpose),
|
164 |
-
weight_shape=weight_shape,
|
165 |
-
output_padding=p,
|
166 |
-
**common_kwargs,
|
167 |
-
).apply(grad_output, weight, None)
|
168 |
-
|
169 |
-
if ctx.needs_input_grad[1] and not weight_gradients_disabled:
|
170 |
-
grad_weight = Conv2dGradWeight.apply(grad_output, input)
|
171 |
-
|
172 |
-
if ctx.needs_input_grad[2]:
|
173 |
-
grad_bias = grad_output.sum((0, 2, 3))
|
174 |
-
|
175 |
-
return grad_input, grad_weight, grad_bias
|
176 |
-
|
177 |
-
class Conv2dGradWeight(autograd.Function):
|
178 |
-
@staticmethod
|
179 |
-
def forward(ctx, grad_output, input):
|
180 |
-
op = torch._C._jit_get_operation(
|
181 |
-
"aten::cudnn_convolution_backward_weight"
|
182 |
-
if not transpose
|
183 |
-
else "aten::cudnn_convolution_transpose_backward_weight"
|
184 |
-
)
|
185 |
-
flags = [
|
186 |
-
torch.backends.cudnn.benchmark,
|
187 |
-
torch.backends.cudnn.deterministic,
|
188 |
-
torch.backends.cudnn.allow_tf32,
|
189 |
-
]
|
190 |
-
grad_weight = op(
|
191 |
-
weight_shape,
|
192 |
-
grad_output,
|
193 |
-
input,
|
194 |
-
padding,
|
195 |
-
stride,
|
196 |
-
dilation,
|
197 |
-
groups,
|
198 |
-
*flags,
|
199 |
-
)
|
200 |
-
ctx.save_for_backward(grad_output, input)
|
201 |
-
|
202 |
-
return grad_weight
|
203 |
-
|
204 |
-
@staticmethod
|
205 |
-
def backward(ctx, grad_grad_weight):
|
206 |
-
grad_output, input = ctx.saved_tensors
|
207 |
-
grad_grad_output, grad_grad_input = None, None
|
208 |
-
|
209 |
-
if ctx.needs_input_grad[0]:
|
210 |
-
grad_grad_output = Conv2d.apply(input, grad_grad_weight, None)
|
211 |
-
|
212 |
-
if ctx.needs_input_grad[1]:
|
213 |
-
p = calc_output_padding(
|
214 |
-
input_shape=input.shape, output_shape=grad_output.shape
|
215 |
-
)
|
216 |
-
grad_grad_input = conv2d_gradfix(
|
217 |
-
transpose=(not transpose),
|
218 |
-
weight_shape=weight_shape,
|
219 |
-
output_padding=p,
|
220 |
-
**common_kwargs,
|
221 |
-
).apply(grad_output, grad_grad_weight, None)
|
222 |
-
|
223 |
-
return grad_grad_output, grad_grad_input
|
224 |
-
|
225 |
-
conv2d_gradfix_cache[key] = Conv2d
|
226 |
-
|
227 |
-
return Conv2d
|
|
|
1 |
+
import contextlib
|
2 |
+
import warnings
|
3 |
+
|
4 |
+
import torch
|
5 |
+
from torch import autograd
|
6 |
+
from torch.nn import functional as F
|
7 |
+
|
8 |
+
enabled = True
|
9 |
+
weight_gradients_disabled = False
|
10 |
+
|
11 |
+
|
12 |
+
@contextlib.contextmanager
|
13 |
+
def no_weight_gradients():
|
14 |
+
global weight_gradients_disabled
|
15 |
+
|
16 |
+
old = weight_gradients_disabled
|
17 |
+
weight_gradients_disabled = True
|
18 |
+
yield
|
19 |
+
weight_gradients_disabled = old
|
20 |
+
|
21 |
+
|
22 |
+
def conv2d(input, weight, bias=None, stride=1, padding=0, dilation=1, groups=1):
|
23 |
+
if could_use_op(input):
|
24 |
+
return conv2d_gradfix(
|
25 |
+
transpose=False,
|
26 |
+
weight_shape=weight.shape,
|
27 |
+
stride=stride,
|
28 |
+
padding=padding,
|
29 |
+
output_padding=0,
|
30 |
+
dilation=dilation,
|
31 |
+
groups=groups,
|
32 |
+
).apply(input, weight, bias)
|
33 |
+
|
34 |
+
return F.conv2d(
|
35 |
+
input=input,
|
36 |
+
weight=weight,
|
37 |
+
bias=bias,
|
38 |
+
stride=stride,
|
39 |
+
padding=padding,
|
40 |
+
dilation=dilation,
|
41 |
+
groups=groups,
|
42 |
+
)
|
43 |
+
|
44 |
+
|
45 |
+
def conv_transpose2d(
|
46 |
+
input,
|
47 |
+
weight,
|
48 |
+
bias=None,
|
49 |
+
stride=1,
|
50 |
+
padding=0,
|
51 |
+
output_padding=0,
|
52 |
+
groups=1,
|
53 |
+
dilation=1,
|
54 |
+
):
|
55 |
+
if could_use_op(input):
|
56 |
+
return conv2d_gradfix(
|
57 |
+
transpose=True,
|
58 |
+
weight_shape=weight.shape,
|
59 |
+
stride=stride,
|
60 |
+
padding=padding,
|
61 |
+
output_padding=output_padding,
|
62 |
+
groups=groups,
|
63 |
+
dilation=dilation,
|
64 |
+
).apply(input, weight, bias)
|
65 |
+
|
66 |
+
return F.conv_transpose2d(
|
67 |
+
input=input,
|
68 |
+
weight=weight,
|
69 |
+
bias=bias,
|
70 |
+
stride=stride,
|
71 |
+
padding=padding,
|
72 |
+
output_padding=output_padding,
|
73 |
+
dilation=dilation,
|
74 |
+
groups=groups,
|
75 |
+
)
|
76 |
+
|
77 |
+
|
78 |
+
def could_use_op(input):
|
79 |
+
if (not enabled) or (not torch.backends.cudnn.enabled):
|
80 |
+
return False
|
81 |
+
|
82 |
+
if input.device.type != "cuda":
|
83 |
+
return False
|
84 |
+
|
85 |
+
if any(torch.__version__.startswith(x) for x in ["1.7.", "1.8."]):
|
86 |
+
return True
|
87 |
+
|
88 |
+
#warnings.warn(
|
89 |
+
# f"conv2d_gradfix not supported on PyTorch {torch.__version__}. Falling back to torch.nn.functional.conv2d()."
|
90 |
+
#)
|
91 |
+
|
92 |
+
return False
|
93 |
+
|
94 |
+
|
95 |
+
def ensure_tuple(xs, ndim):
|
96 |
+
xs = tuple(xs) if isinstance(xs, (tuple, list)) else (xs,) * ndim
|
97 |
+
|
98 |
+
return xs
|
99 |
+
|
100 |
+
|
101 |
+
conv2d_gradfix_cache = dict()
|
102 |
+
|
103 |
+
|
104 |
+
def conv2d_gradfix(
|
105 |
+
transpose, weight_shape, stride, padding, output_padding, dilation, groups
|
106 |
+
):
|
107 |
+
ndim = 2
|
108 |
+
weight_shape = tuple(weight_shape)
|
109 |
+
stride = ensure_tuple(stride, ndim)
|
110 |
+
padding = ensure_tuple(padding, ndim)
|
111 |
+
output_padding = ensure_tuple(output_padding, ndim)
|
112 |
+
dilation = ensure_tuple(dilation, ndim)
|
113 |
+
|
114 |
+
key = (transpose, weight_shape, stride, padding, output_padding, dilation, groups)
|
115 |
+
if key in conv2d_gradfix_cache:
|
116 |
+
return conv2d_gradfix_cache[key]
|
117 |
+
|
118 |
+
common_kwargs = dict(
|
119 |
+
stride=stride, padding=padding, dilation=dilation, groups=groups
|
120 |
+
)
|
121 |
+
|
122 |
+
def calc_output_padding(input_shape, output_shape):
|
123 |
+
if transpose:
|
124 |
+
return [0, 0]
|
125 |
+
|
126 |
+
return [
|
127 |
+
input_shape[i + 2]
|
128 |
+
- (output_shape[i + 2] - 1) * stride[i]
|
129 |
+
- (1 - 2 * padding[i])
|
130 |
+
- dilation[i] * (weight_shape[i + 2] - 1)
|
131 |
+
for i in range(ndim)
|
132 |
+
]
|
133 |
+
|
134 |
+
class Conv2d(autograd.Function):
|
135 |
+
@staticmethod
|
136 |
+
def forward(ctx, input, weight, bias):
|
137 |
+
if not transpose:
|
138 |
+
out = F.conv2d(input=input, weight=weight, bias=bias, **common_kwargs)
|
139 |
+
|
140 |
+
else:
|
141 |
+
out = F.conv_transpose2d(
|
142 |
+
input=input,
|
143 |
+
weight=weight,
|
144 |
+
bias=bias,
|
145 |
+
output_padding=output_padding,
|
146 |
+
**common_kwargs,
|
147 |
+
)
|
148 |
+
|
149 |
+
ctx.save_for_backward(input, weight)
|
150 |
+
|
151 |
+
return out
|
152 |
+
|
153 |
+
@staticmethod
|
154 |
+
def backward(ctx, grad_output):
|
155 |
+
input, weight = ctx.saved_tensors
|
156 |
+
grad_input, grad_weight, grad_bias = None, None, None
|
157 |
+
|
158 |
+
if ctx.needs_input_grad[0]:
|
159 |
+
p = calc_output_padding(
|
160 |
+
input_shape=input.shape, output_shape=grad_output.shape
|
161 |
+
)
|
162 |
+
grad_input = conv2d_gradfix(
|
163 |
+
transpose=(not transpose),
|
164 |
+
weight_shape=weight_shape,
|
165 |
+
output_padding=p,
|
166 |
+
**common_kwargs,
|
167 |
+
).apply(grad_output, weight, None)
|
168 |
+
|
169 |
+
if ctx.needs_input_grad[1] and not weight_gradients_disabled:
|
170 |
+
grad_weight = Conv2dGradWeight.apply(grad_output, input)
|
171 |
+
|
172 |
+
if ctx.needs_input_grad[2]:
|
173 |
+
grad_bias = grad_output.sum((0, 2, 3))
|
174 |
+
|
175 |
+
return grad_input, grad_weight, grad_bias
|
176 |
+
|
177 |
+
class Conv2dGradWeight(autograd.Function):
|
178 |
+
@staticmethod
|
179 |
+
def forward(ctx, grad_output, input):
|
180 |
+
op = torch._C._jit_get_operation(
|
181 |
+
"aten::cudnn_convolution_backward_weight"
|
182 |
+
if not transpose
|
183 |
+
else "aten::cudnn_convolution_transpose_backward_weight"
|
184 |
+
)
|
185 |
+
flags = [
|
186 |
+
torch.backends.cudnn.benchmark,
|
187 |
+
torch.backends.cudnn.deterministic,
|
188 |
+
torch.backends.cudnn.allow_tf32,
|
189 |
+
]
|
190 |
+
grad_weight = op(
|
191 |
+
weight_shape,
|
192 |
+
grad_output,
|
193 |
+
input,
|
194 |
+
padding,
|
195 |
+
stride,
|
196 |
+
dilation,
|
197 |
+
groups,
|
198 |
+
*flags,
|
199 |
+
)
|
200 |
+
ctx.save_for_backward(grad_output, input)
|
201 |
+
|
202 |
+
return grad_weight
|
203 |
+
|
204 |
+
@staticmethod
|
205 |
+
def backward(ctx, grad_grad_weight):
|
206 |
+
grad_output, input = ctx.saved_tensors
|
207 |
+
grad_grad_output, grad_grad_input = None, None
|
208 |
+
|
209 |
+
if ctx.needs_input_grad[0]:
|
210 |
+
grad_grad_output = Conv2d.apply(input, grad_grad_weight, None)
|
211 |
+
|
212 |
+
if ctx.needs_input_grad[1]:
|
213 |
+
p = calc_output_padding(
|
214 |
+
input_shape=input.shape, output_shape=grad_output.shape
|
215 |
+
)
|
216 |
+
grad_grad_input = conv2d_gradfix(
|
217 |
+
transpose=(not transpose),
|
218 |
+
weight_shape=weight_shape,
|
219 |
+
output_padding=p,
|
220 |
+
**common_kwargs,
|
221 |
+
).apply(grad_output, grad_grad_weight, None)
|
222 |
+
|
223 |
+
return grad_grad_output, grad_grad_input
|
224 |
+
|
225 |
+
conv2d_gradfix_cache[key] = Conv2d
|
226 |
+
|
227 |
+
return Conv2d
|