Spaces:
Running
Running
import io | |
import streamlit as st | |
import requests | |
import numpy as np | |
from PIL import Image | |
from model import get_caption_model, generate_caption | |
def get_model(): | |
return get_caption_model() | |
caption_model = get_model() | |
def predict(): | |
pred_caption = generate_caption('tmp.jpg', caption_model) | |
st.write('Predicted Captions:') | |
st.write(pred_caption) | |
for _ in range(4): | |
pred_caption = generate_caption('tmp.jpg', caption_model, add_noise=True) | |
st.write(pred_caption) | |
img_url = st.text_input(label='Enter Image URL') | |
if (img_url != "") and (img_url != None): | |
img = Image.open(requests.get(img_url, stream=True).raw) | |
img = img.convert('RGB') | |
st.image(img) | |
img.save('tmp.jpg') | |
st.image(img) | |
predict() | |
img = st.file_uploader(label='Upload Image', type=['jpg', 'png']) | |
if img != None: | |
img = img.read() | |
img = Image.open(io.BytesIO(img)) | |
img = img.convert('RGB') | |
img.save('tmp.jpg') | |
st.image(img) | |
predict() | |