prithivMLmods commited on
Commit
0d9ccf7
1 Parent(s): 5193af8

Create 03082024.txt

Browse files
Files changed (1) hide show
  1. last-commit/03082024.txt +263 -0
last-commit/03082024.txt ADDED
@@ -0,0 +1,263 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+ import os
3
+ import random
4
+ import uuid
5
+ import gradio as gr
6
+ import numpy as np
7
+ from PIL import Image
8
+ import spaces
9
+ import torch
10
+ from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler
11
+
12
+ css = '''
13
+ .gradio-container{max-width: 570px !important}
14
+ h1{text-align:center}
15
+ footer {
16
+ visibility: hidden
17
+ }
18
+ '''
19
+
20
+ DESCRIPTIONXX = """
21
+ ## TEXT 2 IMAGE🥠
22
+ """
23
+ examples = [
24
+ "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
25
+ "Chocolate dripping from a donut against a yellow background, 8k",
26
+ "Illustration of A starry night camp in the mountains, 4k, cinematic --ar 85:128 --v 6.0 --style raw",
27
+ "A photo of a lavender cat, hdr, 4k, --ar 85:128 --v 6.0 --style raw",
28
+ "A delicious ceviche cheesecake slice, 4k, octane render, ray tracing, Ultra-High-Definition"
29
+ ]
30
+
31
+ MODEL_OPTIONS = {
32
+ "Lightning": "SG161222/RealVisXL_V4.0_Lightning",
33
+ "Turbovision": "SG161222/RealVisXL_V3.0_Turbo",
34
+
35
+ }
36
+
37
+ MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "4096"))
38
+ USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE", "0") == "1"
39
+ ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1"
40
+ BATCH_SIZE = int(os.getenv("BATCH_SIZE", "1"))
41
+
42
+ device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
43
+
44
+ def load_and_prepare_model(model_id):
45
+ pipe = StableDiffusionXLPipeline.from_pretrained(
46
+ model_id,
47
+ torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
48
+ use_safetensors=True,
49
+ add_watermarker=False,
50
+ ).to(device)
51
+ pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
52
+
53
+ if USE_TORCH_COMPILE:
54
+ pipe.compile()
55
+
56
+ if ENABLE_CPU_OFFLOAD:
57
+ pipe.enable_model_cpu_offload()
58
+
59
+ return pipe
60
+
61
+ # Preload and compile both models
62
+ models = {key: load_and_prepare_model(value) for key, value in MODEL_OPTIONS.items()}
63
+
64
+ MAX_SEED = np.iinfo(np.int32).max
65
+
66
+ def save_image(img):
67
+ unique_name = str(uuid.uuid4()) + ".png"
68
+ img.save(unique_name)
69
+ return unique_name
70
+
71
+ def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
72
+ if randomize_seed:
73
+ seed = random.randint(0, MAX_SEED)
74
+ return seed
75
+
76
+ @spaces.GPU(duration=60, enable_queue=True)
77
+ def generate(
78
+ model_choice: str,
79
+ prompt: str,
80
+ negative_prompt: str = "",
81
+ use_negative_prompt: bool = False,
82
+ seed: int = 1,
83
+ width: int = 1024,
84
+ height: int = 1024,
85
+ guidance_scale: float = 3,
86
+ num_inference_steps: int = 25,
87
+ randomize_seed: bool = False,
88
+ use_resolution_binning: bool = True,
89
+ num_images: int = 1,
90
+ progress=gr.Progress(track_tqdm=True),
91
+ ):
92
+ global models
93
+ pipe = models[model_choice]
94
+
95
+ seed = int(randomize_seed_fn(seed, randomize_seed))
96
+ generator = torch.Generator(device=device).manual_seed(seed)
97
+
98
+ options = {
99
+ "prompt": [prompt] * num_images,
100
+ "negative_prompt": [negative_prompt] * num_images if use_negative_prompt else None,
101
+ "width": width,
102
+ "height": height,
103
+ "guidance_scale": guidance_scale,
104
+ "num_inference_steps": num_inference_steps,
105
+ "generator": generator,
106
+ "output_type": "pil",
107
+ }
108
+
109
+ if use_resolution_binning:
110
+ options["use_resolution_binning"] = True
111
+
112
+ images = []
113
+ for i in range(0, num_images, BATCH_SIZE):
114
+ batch_options = options.copy()
115
+ batch_options["prompt"] = options["prompt"][i:i+BATCH_SIZE]
116
+ if "negative_prompt" in batch_options:
117
+ batch_options["negative_prompt"] = options["negative_prompt"][i:i+BATCH_SIZE]
118
+ images.extend(pipe(**batch_options).images)
119
+
120
+ image_paths = [save_image(img) for img in images]
121
+ return image_paths, seed
122
+
123
+ def load_predefined_images():
124
+ predefined_images = [
125
+ "assets/1.png",
126
+ "assets/2.png",
127
+ "assets/3.png",
128
+ "assets/4.png",
129
+ "assets/5.png",
130
+ "assets/6.png",
131
+ "assets/7.png",
132
+ "assets/8.png",
133
+ "assets/9.png",
134
+ "assets/10.png",
135
+ "assets/11.png",
136
+ "assets/12.png",
137
+ ]
138
+ return predefined_images
139
+
140
+ with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo:
141
+ gr.Markdown(DESCRIPTIONXX)
142
+ with gr.Row():
143
+ prompt = gr.Text(
144
+ label="Prompt",
145
+ show_label=False,
146
+ max_lines=1,
147
+ placeholder="Enter your prompt",
148
+ container=False,
149
+ )
150
+ run_button = gr.Button("Run⚡", scale=0)
151
+ result = gr.Gallery(label="Result", columns=1, show_label=False)
152
+
153
+ with gr.Row():
154
+ model_choice = gr.Dropdown(
155
+ label="Model Selection",
156
+ choices=list(MODEL_OPTIONS.keys()),
157
+ value="Lightning"
158
+ )
159
+
160
+ with gr.Accordion("Advanced options", open=True, visible=False):
161
+ num_images = gr.Slider(
162
+ label="Number of Images",
163
+ minimum=1,
164
+ maximum=1,
165
+ step=1,
166
+ value=1,
167
+ )
168
+ with gr.Row():
169
+ with gr.Column(scale=1):
170
+ use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=True)
171
+ negative_prompt = gr.Text(
172
+ label="Negative prompt",
173
+ max_lines=5,
174
+ lines=4,
175
+ placeholder="Enter a negative prompt",
176
+ value="(deformed, distorted, disfigured:1.3), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers:1.4), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation",
177
+ visible=True,
178
+ )
179
+ seed = gr.Slider(
180
+ label="Seed",
181
+ minimum=0,
182
+ maximum=MAX_SEED,
183
+ step=1,
184
+ value=0,
185
+ )
186
+ randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
187
+ with gr.Row():
188
+ width = gr.Slider(
189
+ label="Width",
190
+ minimum=512,
191
+ maximum=MAX_IMAGE_SIZE,
192
+ step=64,
193
+ value=1024,
194
+ )
195
+ height = gr.Slider(
196
+ label="Height",
197
+ minimum=512,
198
+ maximum=MAX_IMAGE_SIZE,
199
+ step=64,
200
+ value=1024,
201
+ )
202
+ with gr.Row():
203
+ guidance_scale = gr.Slider(
204
+ label="Guidance Scale",
205
+ minimum=0.1,
206
+ maximum=6,
207
+ step=0.1,
208
+ value=3.0,
209
+ )
210
+ num_inference_steps = gr.Slider(
211
+ label="Number of inference steps",
212
+ minimum=1,
213
+ maximum=35,
214
+ step=1,
215
+ value=20,
216
+ )
217
+
218
+ gr.Examples(
219
+ examples=examples,
220
+ inputs=prompt,
221
+ cache_examples=False
222
+ )
223
+
224
+ use_negative_prompt.change(
225
+ fn=lambda x: gr.update(visible=x),
226
+ inputs=use_negative_prompt,
227
+ outputs=negative_prompt,
228
+ api_name=False,
229
+ )
230
+
231
+ gr.on(
232
+ triggers=[
233
+ prompt.submit,
234
+ negative_prompt.submit,
235
+ run_button.click,
236
+ ],
237
+ fn=generate,
238
+ inputs=[
239
+ model_choice,
240
+ prompt,
241
+ negative_prompt,
242
+ use_negative_prompt,
243
+ seed,
244
+ width,
245
+ height,
246
+ guidance_scale,
247
+ num_inference_steps,
248
+ randomize_seed,
249
+ num_images
250
+ ],
251
+ outputs=[result, seed],
252
+ api_name="run",
253
+ )
254
+ gr.Markdown("🥠Models used in the playground [[Lightning]](https://huggingface.co/SG161222/RealVisXL_V4.0_Lightning), [[Turbo]](https://huggingface.co/SG161222/RealVisXL_V3.0_Turbo) for image generation. stable diffusion xl piped (sdxl) model HF. This is the demo space for generating images using the Stable Diffusion XL models, with multi different variants available.")
255
+ gr.Markdown("🥠This is the demo space for generating images using Stable Diffusion with quality styles, different models and types. Try the sample prompts to generate higher quality images. Try the sample prompts for generating higher quality images.<a href='https://huggingface.co/spaces/prithivMLmods/Top-Prompt-Collection' target='_blank'>Try prompts</a>.")
256
+ gr.Markdown("⚠️ users are accountable for the content they generate and are responsible for ensuring it meets appropriate ethical standards.")
257
+
258
+ with gr.Column(scale=3):
259
+ gr.Markdown("### Image Gallery")
260
+ predefined_gallery = gr.Gallery(label="Image Gallery", columns=3, show_label=False, value=load_predefined_images())
261
+
262
+ if __name__ == "__main__":
263
+ demo.queue(max_size=20).launch(show_api=False)