Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,98 +1,15 @@
|
|
| 1 |
import os
|
| 2 |
-
import sys
|
| 3 |
-
import subprocess
|
| 4 |
import spaces
|
| 5 |
import gradio as gr
|
| 6 |
import numpy as np
|
| 7 |
import torch
|
| 8 |
-
import
|
| 9 |
-
import
|
| 10 |
-
import shutil
|
| 11 |
-
import glob
|
| 12 |
-
from PIL import Image
|
| 13 |
from typing import Iterable
|
| 14 |
from gradio.themes import Soft
|
| 15 |
from gradio.themes.utils import colors, fonts, sizes
|
|
|
|
| 16 |
|
| 17 |
-
# ---------------------------------------------------------
|
| 18 |
-
# 1. ENVIRONMENT SETUP & REPO CLONING
|
| 19 |
-
# ---------------------------------------------------------
|
| 20 |
-
REPO_URL = "https://github.com/facebookresearch/sam-3d-body.git"
|
| 21 |
-
REPO_DIR = "sam-3d-body"
|
| 22 |
-
|
| 23 |
-
def setup_sam_3d_env():
|
| 24 |
-
"""
|
| 25 |
-
Clones the repo, installs dependencies, and fixes sys.path
|
| 26 |
-
so that 'utils', 'tools', and 'sam_3d_body' can be imported.
|
| 27 |
-
"""
|
| 28 |
-
# 1. Clone if not exists
|
| 29 |
-
if not os.path.exists(REPO_DIR):
|
| 30 |
-
print(f"Cloning SAM 3D Body repository from {REPO_URL}...")
|
| 31 |
-
try:
|
| 32 |
-
subprocess.run(["git", "clone", REPO_URL], check=True)
|
| 33 |
-
print("Installing sam-3d-body package in editable mode...")
|
| 34 |
-
# We install using pip to resolve internal package dependencies
|
| 35 |
-
subprocess.run([sys.executable, "-m", "pip", "install", "-e", REPO_DIR], check=True)
|
| 36 |
-
|
| 37 |
-
# Install other requirements usually needed
|
| 38 |
-
subprocess.run([sys.executable, "-m", "pip", "install", "trimesh", "opencv-python", "matplotlib"], check=True)
|
| 39 |
-
except subprocess.CalledProcessError as e:
|
| 40 |
-
print(f"Error during setup: {e}")
|
| 41 |
-
return False
|
| 42 |
-
|
| 43 |
-
# 2. Add Critical Paths to sys.path
|
| 44 |
-
repo_abs_path = os.path.abspath(REPO_DIR)
|
| 45 |
-
notebook_path = os.path.join(repo_abs_path, "notebook")
|
| 46 |
-
|
| 47 |
-
# CRITICAL: Add repo root first so 'import tools' and 'import sam_3d_body' work inside utils.py
|
| 48 |
-
if repo_abs_path not in sys.path:
|
| 49 |
-
sys.path.insert(0, repo_abs_path)
|
| 50 |
-
print(f"Added to sys.path: {repo_abs_path}")
|
| 51 |
-
|
| 52 |
-
# Add notebook folder so we can 'import utils'
|
| 53 |
-
if notebook_path not in sys.path:
|
| 54 |
-
sys.path.insert(0, notebook_path)
|
| 55 |
-
print(f"Added to sys.path: {notebook_path}")
|
| 56 |
-
|
| 57 |
-
return True
|
| 58 |
-
|
| 59 |
-
# Run setup immediately
|
| 60 |
-
env_ready = setup_sam_3d_env()
|
| 61 |
-
|
| 62 |
-
# ---------------------------------------------------------
|
| 63 |
-
# 2. IMPORTS
|
| 64 |
-
# ---------------------------------------------------------
|
| 65 |
-
|
| 66 |
-
# --- Import SAM3 (Segmentation) ---
|
| 67 |
-
try:
|
| 68 |
-
from transformers import Sam3Processor, Sam3Model
|
| 69 |
-
SAM3_AVAILABLE = True
|
| 70 |
-
except ImportError:
|
| 71 |
-
print("Warning: transformers library not found or outdated. SAM3 will be disabled.")
|
| 72 |
-
SAM3_AVAILABLE = False
|
| 73 |
-
|
| 74 |
-
# --- Import SAM 3D Body Utils ---
|
| 75 |
-
# We use a specific alias to avoid confusion with standard python utils
|
| 76 |
-
sam3d_utils = None
|
| 77 |
-
SAM3D_AVAILABLE = False
|
| 78 |
-
|
| 79 |
-
if env_ready:
|
| 80 |
-
try:
|
| 81 |
-
# Now that sys.path is fixed, this import should work
|
| 82 |
-
# and utils.py will successfully find 'tools' and 'sam_3d_body'
|
| 83 |
-
import utils as sam3d_utils_module
|
| 84 |
-
sam3d_utils = sam3d_utils_module
|
| 85 |
-
SAM3D_AVAILABLE = True
|
| 86 |
-
print("SAM 3D Body utils imported successfully.")
|
| 87 |
-
except ImportError as e:
|
| 88 |
-
print(f"Error importing SAM 3D Body utils: {e}")
|
| 89 |
-
print("This usually happens if 'tools' or 'sam_3d_body' cannot be found by utils.py")
|
| 90 |
-
import traceback
|
| 91 |
-
traceback.print_exc()
|
| 92 |
-
|
| 93 |
-
# ---------------------------------------------------------
|
| 94 |
-
# 3. THEME DEFINITION
|
| 95 |
-
# ---------------------------------------------------------
|
| 96 |
colors.steel_blue = colors.Color(
|
| 97 |
name="steel_blue",
|
| 98 |
c50="#EBF3F8",
|
|
@@ -158,222 +75,119 @@ steel_blue_theme = SteelBlueTheme()
|
|
| 158 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 159 |
print(f"Using device: {device}")
|
| 160 |
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
print("SAM3 Loaded.")
|
| 174 |
-
except Exception as e:
|
| 175 |
-
print(f"Error loading SAM3: {e}")
|
| 176 |
-
|
| 177 |
-
# --- 2. Load SAM 3D Body ---
|
| 178 |
-
sam3d_estimator = None
|
| 179 |
-
sam3d_visualizer = None
|
| 180 |
-
|
| 181 |
-
if SAM3D_AVAILABLE:
|
| 182 |
-
try:
|
| 183 |
-
print("Loading SAM 3D Body Estimator (this may take a moment)...")
|
| 184 |
-
# Initialize estimator using the utility function from the repo
|
| 185 |
-
# Note: detector_name="vitdet" is default, requiring 'tools' import to work
|
| 186 |
-
sam3d_estimator = sam3d_utils.setup_sam_3d_body(
|
| 187 |
-
hf_repo_id="facebook/sam-3d-body-dinov3",
|
| 188 |
-
device=device
|
| 189 |
-
)
|
| 190 |
-
sam3d_visualizer = sam3d_utils.setup_visualizer()
|
| 191 |
-
print("SAM 3D Body Loaded Successfully.")
|
| 192 |
-
except Exception as e:
|
| 193 |
-
print(f"Error loading SAM 3D Body model: {e}")
|
| 194 |
-
# If it fails, we set the flag to False so the UI handles it gracefully
|
| 195 |
-
SAM3D_AVAILABLE = False
|
| 196 |
-
import traceback
|
| 197 |
-
traceback.print_exc()
|
| 198 |
-
|
| 199 |
-
# ---------------------------------------------------------
|
| 200 |
-
# 5. INFERENCE FUNCTIONS
|
| 201 |
-
# ---------------------------------------------------------
|
| 202 |
|
| 203 |
@spaces.GPU
|
| 204 |
def segment_image(input_image, text_prompt, threshold=0.5):
|
| 205 |
-
"""Handler for Tab 1: Segmentation"""
|
| 206 |
if input_image is None:
|
| 207 |
raise gr.Error("Please upload an image.")
|
| 208 |
if not text_prompt:
|
| 209 |
-
raise gr.Error("Please enter a text prompt.")
|
| 210 |
-
|
| 211 |
-
|
|
|
|
| 212 |
|
|
|
|
| 213 |
image_pil = input_image.convert("RGB")
|
| 214 |
-
inputs = sam3_processor(images=image_pil, text=text_prompt, return_tensors="pt").to(device)
|
| 215 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 216 |
with torch.no_grad():
|
| 217 |
-
outputs =
|
| 218 |
|
| 219 |
-
|
|
|
|
| 220 |
outputs,
|
| 221 |
threshold=threshold,
|
| 222 |
mask_threshold=0.5,
|
| 223 |
target_sizes=inputs.get("original_sizes").tolist()
|
| 224 |
)[0]
|
| 225 |
|
| 226 |
-
masks = results['masks']
|
| 227 |
-
scores = results['scores']
|
|
|
|
|
|
|
|
|
|
| 228 |
|
| 229 |
annotations = []
|
| 230 |
-
|
| 231 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 232 |
annotations.append((mask, label))
|
| 233 |
|
|
|
|
| 234 |
return (image_pil, annotations)
|
| 235 |
|
| 236 |
-
|
| 237 |
-
@spaces.GPU
|
| 238 |
-
def process_3d_body(input_image):
|
| 239 |
-
"""Handler for Tab 2: 3D Body Reconstruction"""
|
| 240 |
-
if input_image is None:
|
| 241 |
-
raise gr.Error("Please upload an image.")
|
| 242 |
-
|
| 243 |
-
if not SAM3D_AVAILABLE or sam3d_estimator is None:
|
| 244 |
-
raise gr.Error("SAM 3D Body libraries or model failed to load. Check console logs.")
|
| 245 |
-
|
| 246 |
-
# Convert PIL to CV2 BGR for the estimator
|
| 247 |
-
img_np = np.array(input_image.convert("RGB"))
|
| 248 |
-
img_cv2 = cv2.cvtColor(img_np, cv2.COLOR_RGB2BGR)
|
| 249 |
-
|
| 250 |
-
# The estimator.process_one_image expects a file path
|
| 251 |
-
with tempfile.NamedTemporaryFile(suffix=".jpg", delete=False) as tmp_file:
|
| 252 |
-
tmp_path = tmp_file.name
|
| 253 |
-
cv2.imwrite(tmp_path, img_cv2)
|
| 254 |
-
|
| 255 |
-
try:
|
| 256 |
-
print(f"Processing 3D Body for {tmp_path}...")
|
| 257 |
-
|
| 258 |
-
# 1. Run Inference
|
| 259 |
-
# process_one_image is a method of the estimator class inside sam-3d-body
|
| 260 |
-
outputs = sam3d_estimator.process_one_image(tmp_path)
|
| 261 |
-
|
| 262 |
-
if not outputs:
|
| 263 |
-
return None, None, None, "No people detected."
|
| 264 |
-
|
| 265 |
-
# 2. 2D Keypoints Visualization
|
| 266 |
-
vis_results_2d = sam3d_utils.visualize_2d_results(img_cv2, outputs, sam3d_visualizer)
|
| 267 |
-
# Combine if multiple, or just take first for display simplicity.
|
| 268 |
-
# Usually vis_results_2d is a list of full images with drawings.
|
| 269 |
-
if vis_results_2d:
|
| 270 |
-
# For simplicity, if multiple people, the last one overrides or we assume 1 main person
|
| 271 |
-
# Ideally we'd grid them, but for Gradio output, let's take the first result's image
|
| 272 |
-
res_2d_rgb = cv2.cvtColor(vis_results_2d[0], cv2.COLOR_BGR2RGB)
|
| 273 |
-
else:
|
| 274 |
-
res_2d_rgb = img_np
|
| 275 |
-
|
| 276 |
-
# 3. 3D Overlay Visualization
|
| 277 |
-
# visualize_3d_mesh returns a wide image (Original | Overlay | White | Side)
|
| 278 |
-
mesh_results_wide = sam3d_utils.visualize_3d_mesh(img_cv2, outputs, sam3d_estimator.faces)
|
| 279 |
-
if mesh_results_wide:
|
| 280 |
-
res_3d_overlay_rgb = cv2.cvtColor(mesh_results_wide[0], cv2.COLOR_BGR2RGB)
|
| 281 |
-
else:
|
| 282 |
-
res_3d_overlay_rgb = img_np
|
| 283 |
-
|
| 284 |
-
# 4. Save PLY for Model3D
|
| 285 |
-
# Create a unique directory for this run
|
| 286 |
-
output_dir = tempfile.mkdtemp()
|
| 287 |
-
image_name = "gradio_mesh"
|
| 288 |
-
|
| 289 |
-
# save_mesh_results returns list of paths to .ply files
|
| 290 |
-
ply_files = sam3d_utils.save_mesh_results(
|
| 291 |
-
img_cv2,
|
| 292 |
-
outputs,
|
| 293 |
-
sam3d_estimator.faces,
|
| 294 |
-
output_dir,
|
| 295 |
-
image_name
|
| 296 |
-
)
|
| 297 |
-
|
| 298 |
-
ply_path = None
|
| 299 |
-
if ply_files and len(ply_files) > 0:
|
| 300 |
-
ply_path = ply_files[0] # Return the first mesh found
|
| 301 |
-
|
| 302 |
-
status_msg = f"Detected {len(outputs)} person(s). Displaying Person 0."
|
| 303 |
-
|
| 304 |
-
return res_2d_rgb, res_3d_overlay_rgb, ply_path, status_msg
|
| 305 |
-
|
| 306 |
-
except Exception as e:
|
| 307 |
-
import traceback
|
| 308 |
-
traceback.print_exc()
|
| 309 |
-
raise gr.Error(f"Inference failed: {str(e)}")
|
| 310 |
-
|
| 311 |
-
finally:
|
| 312 |
-
# Cleanup input temp file
|
| 313 |
-
if os.path.exists(tmp_path):
|
| 314 |
-
os.remove(tmp_path)
|
| 315 |
-
|
| 316 |
-
# ---------------------------------------------------------
|
| 317 |
-
# 6. GUI
|
| 318 |
-
# ---------------------------------------------------------
|
| 319 |
-
|
| 320 |
-
css = """
|
| 321 |
#col-container {
|
| 322 |
margin: 0 auto;
|
| 323 |
-
max-width:
|
| 324 |
}
|
| 325 |
-
#main-title h1 {font-size: 2.1em !important;
|
| 326 |
-
.gradio-container {min-height: 0px !important;}
|
| 327 |
"""
|
| 328 |
|
| 329 |
with gr.Blocks(css=css, theme=steel_blue_theme) as demo:
|
| 330 |
with gr.Column(elem_id="col-container"):
|
| 331 |
-
gr.Markdown(
|
|
|
|
|
|
|
|
|
|
| 332 |
|
| 333 |
-
|
| 334 |
-
|
| 335 |
-
|
| 336 |
-
|
| 337 |
-
|
| 338 |
-
|
| 339 |
-
|
| 340 |
-
|
| 341 |
-
|
| 342 |
-
|
| 343 |
-
|
| 344 |
-
t1_output = gr.AnnotatedImage(label="Segmented Output", height=450)
|
| 345 |
-
|
| 346 |
-
t1_btn.click(segment_image, [t1_input, t1_prompt, t1_thresh], [t1_output])
|
| 347 |
-
|
| 348 |
-
# Optional examples if files exist
|
| 349 |
-
# gr.Examples(...)
|
| 350 |
|
| 351 |
-
|
| 352 |
-
|
| 353 |
-
gr.Markdown("Detect human bodies and reconstruct **3D Meshes**.")
|
| 354 |
|
| 355 |
with gr.Row():
|
| 356 |
-
|
| 357 |
-
|
| 358 |
-
|
| 359 |
-
|
| 360 |
-
|
| 361 |
-
|
| 362 |
-
|
| 363 |
-
|
| 364 |
-
|
| 365 |
-
|
| 366 |
-
|
| 367 |
-
|
| 368 |
-
|
| 369 |
-
|
| 370 |
-
)
|
| 371 |
|
| 372 |
-
|
| 373 |
-
|
| 374 |
-
|
| 375 |
-
|
| 376 |
-
|
| 377 |
|
| 378 |
if __name__ == "__main__":
|
| 379 |
demo.launch(mcp_server=True, ssr_mode=False, show_error=True)
|
|
|
|
| 1 |
import os
|
|
|
|
|
|
|
| 2 |
import spaces
|
| 3 |
import gradio as gr
|
| 4 |
import numpy as np
|
| 5 |
import torch
|
| 6 |
+
import random
|
| 7 |
+
from PIL import Image, ImageDraw
|
|
|
|
|
|
|
|
|
|
| 8 |
from typing import Iterable
|
| 9 |
from gradio.themes import Soft
|
| 10 |
from gradio.themes.utils import colors, fonts, sizes
|
| 11 |
+
from transformers import Sam3Processor, Sam3Model
|
| 12 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
colors.steel_blue = colors.Color(
|
| 14 |
name="steel_blue",
|
| 15 |
c50="#EBF3F8",
|
|
|
|
| 75 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 76 |
print(f"Using device: {device}")
|
| 77 |
|
| 78 |
+
try:
|
| 79 |
+
print("Loading SAM3 Model and Processor...")
|
| 80 |
+
model = Sam3Model.from_pretrained("facebook/sam3").to(device)
|
| 81 |
+
processor = Sam3Processor.from_pretrained("facebook/sam3")
|
| 82 |
+
print("Model loaded successfully.")
|
| 83 |
+
|
| 84 |
+
except Exception as e:
|
| 85 |
+
print(f"Error loading model: {e}")
|
| 86 |
+
print("Ensure you have the correct libraries installed and access to the model.")
|
| 87 |
+
# Fallback/Placeholder for demonstration if model doesn't exist in environment yet
|
| 88 |
+
model = None
|
| 89 |
+
processor = None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 90 |
|
| 91 |
@spaces.GPU
|
| 92 |
def segment_image(input_image, text_prompt, threshold=0.5):
|
|
|
|
| 93 |
if input_image is None:
|
| 94 |
raise gr.Error("Please upload an image.")
|
| 95 |
if not text_prompt:
|
| 96 |
+
raise gr.Error("Please enter a text prompt (e.g., 'cat', 'face').")
|
| 97 |
+
|
| 98 |
+
if model is None or processor is None:
|
| 99 |
+
raise gr.Error("Model not loaded correctly.")
|
| 100 |
|
| 101 |
+
# Convert image to RGB
|
| 102 |
image_pil = input_image.convert("RGB")
|
|
|
|
| 103 |
|
| 104 |
+
# Preprocess
|
| 105 |
+
inputs = processor(images=image_pil, text=text_prompt, return_tensors="pt").to(device)
|
| 106 |
+
|
| 107 |
+
# Inference
|
| 108 |
with torch.no_grad():
|
| 109 |
+
outputs = model(**inputs)
|
| 110 |
|
| 111 |
+
# Post-process results
|
| 112 |
+
results = processor.post_process_instance_segmentation(
|
| 113 |
outputs,
|
| 114 |
threshold=threshold,
|
| 115 |
mask_threshold=0.5,
|
| 116 |
target_sizes=inputs.get("original_sizes").tolist()
|
| 117 |
)[0]
|
| 118 |
|
| 119 |
+
masks = results['masks'] # Boolean tensor [N, H, W]
|
| 120 |
+
scores = results['scores']
|
| 121 |
+
|
| 122 |
+
# Prepare for Gradio AnnotatedImage
|
| 123 |
+
# Gradio expects (image, [(mask, label), ...])
|
| 124 |
|
| 125 |
annotations = []
|
| 126 |
+
masks_np = masks.cpu().numpy()
|
| 127 |
+
scores_np = scores.cpu().numpy()
|
| 128 |
+
|
| 129 |
+
for i, mask in enumerate(masks_np):
|
| 130 |
+
# mask is a boolean array (True/False).
|
| 131 |
+
# AnnotatedImage handles the coloring automatically.
|
| 132 |
+
# We just pass the mask and a label.
|
| 133 |
+
score_val = scores_np[i]
|
| 134 |
+
label = f"{text_prompt} ({score_val:.2f})"
|
| 135 |
annotations.append((mask, label))
|
| 136 |
|
| 137 |
+
# Return tuple format for AnnotatedImage
|
| 138 |
return (image_pil, annotations)
|
| 139 |
|
| 140 |
+
css="""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 141 |
#col-container {
|
| 142 |
margin: 0 auto;
|
| 143 |
+
max-width: 980px;
|
| 144 |
}
|
| 145 |
+
#main-title h1 {font-size: 2.1em !important;}
|
|
|
|
| 146 |
"""
|
| 147 |
|
| 148 |
with gr.Blocks(css=css, theme=steel_blue_theme) as demo:
|
| 149 |
with gr.Column(elem_id="col-container"):
|
| 150 |
+
gr.Markdown(
|
| 151 |
+
"# **SAM3 Image Segmentation**",
|
| 152 |
+
elem_id="main-title"
|
| 153 |
+
)
|
| 154 |
|
| 155 |
+
gr.Markdown("Segment objects in images using **SAM3** (Segment Anything Model 3) with text prompts.")
|
| 156 |
+
|
| 157 |
+
with gr.Row():
|
| 158 |
+
with gr.Column(scale=1):
|
| 159 |
+
input_image = gr.Image(label="Input Image", type="pil", height=300)
|
| 160 |
+
text_prompt = gr.Textbox(
|
| 161 |
+
label="Text Prompt",
|
| 162 |
+
placeholder="e.g., cat, ear, car wheel...",
|
| 163 |
+
)
|
| 164 |
+
|
| 165 |
+
run_button = gr.Button("Segment", variant="primary")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 166 |
|
| 167 |
+
with gr.Column(scale=1.5):
|
| 168 |
+
output_image = gr.AnnotatedImage(label="Segmented Output", height=380)
|
|
|
|
| 169 |
|
| 170 |
with gr.Row():
|
| 171 |
+
threshold = gr.Slider(label="Confidence Threshold", minimum=0.0, maximum=1.0, value=0.4, step=0.05)
|
| 172 |
+
|
| 173 |
+
gr.Examples(
|
| 174 |
+
examples=[
|
| 175 |
+
["examples/player.jpg", "player in white", 0.5],
|
| 176 |
+
["examples/goldencat.webp", "black cat", 0.4],
|
| 177 |
+
["examples/taxi.jpg", "blue taxi", 0.5],
|
| 178 |
+
],
|
| 179 |
+
inputs=[input_image, text_prompt, threshold],
|
| 180 |
+
outputs=[output_image],
|
| 181 |
+
fn=segment_image,
|
| 182 |
+
cache_examples="lazy",
|
| 183 |
+
label="Examples"
|
| 184 |
+
)
|
|
|
|
| 185 |
|
| 186 |
+
run_button.click(
|
| 187 |
+
fn=segment_image,
|
| 188 |
+
inputs=[input_image, text_prompt, threshold],
|
| 189 |
+
outputs=[output_image]
|
| 190 |
+
)
|
| 191 |
|
| 192 |
if __name__ == "__main__":
|
| 193 |
demo.launch(mcp_server=True, ssr_mode=False, show_error=True)
|