Spaces:
Running
on
Zero
Running
on
Zero
| import os | |
| import random | |
| import uuid | |
| import json | |
| import time | |
| import asyncio | |
| from threading import Thread | |
| import gradio as gr | |
| import spaces | |
| import torch | |
| import numpy as np | |
| from PIL import Image | |
| import cv2 | |
| from transformers import ( | |
| Qwen2_5_VLForConditionalGeneration, | |
| AutoModel, | |
| AutoTokenizer, | |
| AutoProcessor, | |
| TextIteratorStreamer, | |
| ) | |
| from transformers.image_utils import load_image | |
| # Constants for text generation | |
| MAX_MAX_NEW_TOKENS = 2048 | |
| DEFAULT_MAX_NEW_TOKENS = 1024 | |
| MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096")) | |
| device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") | |
| # Load Qwen2.5-VL-7B-Instruct | |
| MODEL_ID_M = "Qwen/Qwen2.5-VL-7B-Instruct" | |
| processor_m = AutoProcessor.from_pretrained(MODEL_ID_M, trust_remote_code=True) | |
| model_m = Qwen2_5_VLForConditionalGeneration.from_pretrained( | |
| MODEL_ID_M, | |
| trust_remote_code=True, | |
| torch_dtype=torch.float16 | |
| ).to(device).eval() | |
| # Load Qwen2.5-VL-3B-Instruct | |
| MODEL_ID_X = "Qwen/Qwen2.5-VL-3B-Instruct" | |
| processor_x = AutoProcessor.from_pretrained(MODEL_ID_X, trust_remote_code=True) | |
| model_x = Qwen2_5_VLForConditionalGeneration.from_pretrained( | |
| MODEL_ID_X, | |
| trust_remote_code=True, | |
| torch_dtype=torch.float16 | |
| ).to(device).eval() | |
| # Load Qwen2.5-VL-7B-Abliterated-Caption-it | |
| MODEL_ID_Q = "prithivMLmods/Qwen2.5-VL-7B-Abliterated-Caption-it" | |
| processor_q = AutoProcessor.from_pretrained(MODEL_ID_Q, trust_remote_code=True) | |
| model_q = Qwen2_5_VLForConditionalGeneration.from_pretrained( | |
| MODEL_ID_Q, | |
| trust_remote_code=True, | |
| torch_dtype=torch.float16 | |
| ).to(device).eval() | |
| # Load Lumian2-VLR-7B-Thinking | |
| MODEL_ID_Y = "prithivMLmods/Lumian2-VLR-7B-Thinking" | |
| processor_y = AutoProcessor.from_pretrained(MODEL_ID_Y, trust_remote_code=True) | |
| model_y = Qwen2_5_VLForConditionalGeneration.from_pretrained( | |
| MODEL_ID_Y, | |
| trust_remote_code=True, | |
| torch_dtype=torch.float16 | |
| ).to(device).eval() | |
| def downsample_video(video_path): | |
| """ | |
| Downsamples the video to evenly spaced frames. | |
| Each frame is returned as a PIL image along with its timestamp. | |
| """ | |
| vidcap = cv2.VideoCapture(video_path) | |
| total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT)) | |
| fps = vidcap.get(cv2.CAP_PROP_FPS) | |
| frames = [] | |
| frame_indices = np.linspace(0, total_frames - 1, 10, dtype=int) | |
| for i in frame_indices: | |
| vidcap.set(cv2.CAP_PROP_POS_FRAMES, i) | |
| success, image = vidcap.read() | |
| if success: | |
| image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) | |
| pil_image = Image.fromarray(image) | |
| timestamp = round(i / fps, 2) | |
| frames.append((pil_image, timestamp)) | |
| vidcap.release() | |
| return frames | |
| def generate_image(model_name: str, text: str, image: Image.Image, | |
| max_new_tokens: int = 1024, | |
| temperature: float = 0.6, | |
| top_p: float = 0.9, | |
| top_k: int = 50, | |
| repetition_penalty: float = 1.2): | |
| """ | |
| Generates responses using the selected model for image input. | |
| Yields raw text and Markdown-formatted text. | |
| """ | |
| if model_name == "Qwen2.5-VL-7B-Instruct": | |
| processor = processor_m | |
| model = model_m | |
| elif model_name == "Qwen2.5-VL-3B-Instruct": | |
| processor = processor_x | |
| model = model_x | |
| elif model_name == "Qwen2.5-VL-7B-Abliterated-Caption-it": | |
| processor = processor_q | |
| model = model_q | |
| elif model_name == "Lumian2-VLR-7B-Thinking": | |
| processor = processor_y | |
| model = model_y | |
| else: | |
| yield "Invalid model selected.", "Invalid model selected." | |
| return | |
| if image is None: | |
| yield "Please upload an image.", "Please upload an image." | |
| return | |
| messages = [{ | |
| "role": "user", | |
| "content": [ | |
| {"type": "image", "image": image}, | |
| {"type": "text", "text": text}, | |
| ] | |
| }] | |
| prompt_full = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) | |
| inputs = processor( | |
| text=[prompt_full], | |
| images=[image], | |
| return_tensors="pt", | |
| padding=True, | |
| truncation=False, | |
| max_length=MAX_INPUT_TOKEN_LENGTH | |
| ).to(device) | |
| streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True) | |
| generation_kwargs = {**inputs, "streamer": streamer, "max_new_tokens": max_new_tokens} | |
| thread = Thread(target=model.generate, kwargs=generation_kwargs) | |
| thread.start() | |
| buffer = "" | |
| for new_text in streamer: | |
| buffer += new_text | |
| time.sleep(0.01) | |
| yield buffer, buffer | |
| def generate_video(model_name: str, text: str, video_path: str, | |
| max_new_tokens: int = 1024, | |
| temperature: float = 0.6, | |
| top_p: float = 0.9, | |
| top_k: int = 50, | |
| repetition_penalty: float = 1.2): | |
| """ | |
| Generates responses using the selected model for video input. | |
| Yields raw text and Markdown-formatted text. | |
| """ | |
| if model_name == "Qwen2.5-VL-7B-Instruct": | |
| processor = processor_m | |
| model = model_m | |
| elif model_name == "Qwen2.5-VL-3B-Instruct": | |
| processor = processor_x | |
| model = model_x | |
| elif model_name == "Qwen2.5-VL-7B-Abliterated-Caption-it": | |
| processor = processor_q | |
| model = model_q | |
| elif model_name == "Lumian2-VLR-7B-Thinking": | |
| processor = processor_y | |
| model = model_y | |
| else: | |
| yield "Invalid model selected.", "Invalid model selected." | |
| return | |
| if video_path is None: | |
| yield "Please upload a video.", "Please upload a video." | |
| return | |
| frames = downsample_video(video_path) | |
| messages = [ | |
| {"role": "system", "content": [{"type": "text", "text": "You are a helpful assistant."}]}, | |
| {"role": "user", "content": [{"type": "text", "text": text}]} | |
| ] | |
| for frame in frames: | |
| image, timestamp = frame | |
| messages[1]["content"].append({"type": "text", "text": f"Frame {timestamp}:"}) | |
| messages[1]["content"].append({"type": "image", "image": image}) | |
| inputs = processor.apply_chat_template( | |
| messages, | |
| tokenize=True, | |
| add_generation_prompt=True, | |
| return_dict=True, | |
| return_tensors="pt", | |
| truncation=False, | |
| max_length=MAX_INPUT_TOKEN_LENGTH | |
| ).to(device) | |
| streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True) | |
| generation_kwargs = { | |
| **inputs, | |
| "streamer": streamer, | |
| "max_new_tokens": max_new_tokens, | |
| "do_sample": True, | |
| "temperature": temperature, | |
| "top_p": top_p, | |
| "top_k": top_k, | |
| "repetition_penalty": repetition_penalty, | |
| } | |
| thread = Thread(target=model.generate, kwargs=generation_kwargs) | |
| thread.start() | |
| buffer = "" | |
| for new_text in streamer: | |
| buffer += new_text | |
| time.sleep(0.01) | |
| yield buffer, buffer | |
| # Define examples for image and video inference | |
| image_examples = [ | |
| ["Explain the content in detail.", "images/D.jpg"], | |
| ["Explain the content (ocr).", "images/O.jpg"], | |
| ["What is the core meaning of the poem?", "images/S.jpg"], | |
| ["Provide a detailed caption for the image.", "images/A.jpg"], | |
| ["Explain the pie-chart in detail.", "images/2.jpg"], | |
| ["Jsonify Data.", "images/1.jpg"], | |
| ] | |
| video_examples = [ | |
| ["Explain the ad in detail", "videos/1.mp4"], | |
| ["Identify the main actions in the video", "videos/2.mp4"], | |
| ["Identify the main scenes in the video", "videos/3.mp4"] | |
| ] | |
| css = """ | |
| .submit-btn { | |
| background-color: #2980b9 !important; | |
| color: white !important; | |
| } | |
| .submit-btn:hover { | |
| background-color: #3498db !important; | |
| } | |
| .canvas-output { | |
| border: 2px solid #4682B4; | |
| border-radius: 10px; | |
| padding: 20px; | |
| } | |
| """ | |
| # Create the Gradio Interface | |
| with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo: | |
| gr.Markdown("# **[Qwen2.5-VL-Outpost](https://huggingface.co/collections/prithivMLmods/multimodal-implementations-67c9982ea04b39f0608badb0)**") | |
| with gr.Row(): | |
| with gr.Column(): | |
| with gr.Tabs(): | |
| with gr.TabItem("Image Inference"): | |
| image_query = gr.Textbox(label="Query Input", placeholder="Enter your query here...") | |
| image_upload = gr.Image(type="pil", label="Image", height=290) | |
| image_submit = gr.Button("Submit", elem_classes="submit-btn") | |
| gr.Examples( | |
| examples=image_examples, | |
| inputs=[image_query, image_upload] | |
| ) | |
| with gr.TabItem("Video Inference"): | |
| video_query = gr.Textbox(label="Query Input", placeholder="✦︎ Enter your query here...") | |
| video_upload = gr.Video(label="Video", height=290) | |
| video_submit = gr.Button("Submit", elem_classes="submit-btn") | |
| gr.Examples( | |
| examples=video_examples, | |
| inputs=[video_query, video_upload] | |
| ) | |
| with gr.Accordion("Advanced options", open=False): | |
| max_new_tokens = gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS) | |
| temperature = gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6) | |
| top_p = gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9) | |
| top_k = gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50) | |
| repetition_penalty = gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2) | |
| with gr.Column(): | |
| with gr.Column(elem_classes="canvas-output"): | |
| gr.Markdown("## Output") | |
| output = gr.Textbox(label="Raw Output", interactive=False, lines=5, show_copy_button=True) | |
| with gr.Accordion("(Result.md)", open=False): | |
| markdown_output = gr.Markdown() | |
| model_choice = gr.Radio( | |
| choices=["Qwen2.5-VL-7B-Instruct", "Qwen2.5-VL-3B-Instruct", "Lumian2-VLR-7B-Thinking", "Qwen2.5-VL-7B-Abliterated-Caption-it"], | |
| label="Select Model", | |
| value="Qwen2.5-VL-7B-Instruct" | |
| ) | |
| gr.Markdown("**Model Info 💻** | [Report Bug](https://huggingface.co/spaces/prithivMLmods/Qwen2.5-VL/discussions)") | |
| gr.Markdown( | |
| """ | |
| > [Qwen2.5-VL-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct): The Qwen2.5-VL-7B-Instruct model is a multimodal AI model developed by Alibaba Cloud that excels at understanding both text and images. It's a Vision-Language Model (VLM) designed to handle various visual understanding tasks, including image understanding, video analysis, and even multilingual support. | |
| > | |
| > [Qwen2.5-VL-7B-Abliterated-Caption-it](prithivMLmods/Qwen2.5-VL-7B-Abliterated-Caption-it): Qwen2.5-VL-7B-Abliterated-Caption-it is a fine-tuned version of Qwen2.5-VL-7B-Instruct, optimized for Abliterated Captioning / Uncensored Captioning. This model excels at generating detailed, context-rich, and high-fidelity captions across diverse image categories and variational aspect ratios, offering robust visual understanding without filtering or censorship. | |
| """ | |
| ) | |
| gr.Markdown("> [Lumian2-VLR-7B-Thinking](https://huggingface.co/prithivMLmods/Lumian2-VLR-7B-Thinking): The Lumian2-VLR-7B-Thinking model is a high-fidelity vision-language reasoning (experimental model) system designed for fine-grained multimodal understanding. Built on Qwen2.5-VL-7B-Instruct, this model enhances image captioning, sampled video reasoning, and document comprehension through explicit grounded reasoning. It produces structured reasoning traces aligned with visual coordinates, enabling explainable multimodal reasoning.") | |
| gr.Markdown(">⚠️note: all the models in space are not guaranteed to perform well in video inference use cases.") | |
| image_submit.click( | |
| fn=generate_image, | |
| inputs=[model_choice, image_query, image_upload, max_new_tokens, temperature, top_p, top_k, repetition_penalty], | |
| outputs=[output, markdown_output] | |
| ) | |
| video_submit.click( | |
| fn=generate_video, | |
| inputs=[model_choice, video_query, video_upload, max_new_tokens, temperature, top_p, top_k, repetition_penalty], | |
| outputs=[output, markdown_output] | |
| ) | |
| if __name__ == "__main__": | |
| demo.queue(max_size=50).launch(share=True, mcp_server=True, ssr_mode=False, show_error=True) |