Spaces:
Running
on
Zero
Running
on
Zero
| import gradio as gr | |
| from transformers import AutoProcessor, Qwen2_5_VLForConditionalGeneration, TextIteratorStreamer | |
| from transformers.image_utils import load_image | |
| from threading import Thread | |
| import time | |
| import torch | |
| import spaces | |
| import cv2 | |
| import numpy as np | |
| from PIL import Image | |
| def progress_bar_html(label: str) -> str: | |
| """ | |
| Returns an HTML snippet for a thin progress bar with a label. | |
| The progress bar is styled as a dark animated bar. | |
| """ | |
| return f''' | |
| <div style="display: flex; align-items: center;"> | |
| <span style="margin-right: 10px; font-size: 14px;">{label}</span> | |
| <div style="width: 110px; height: 5px; background-color: #9370DB; border-radius: 2px; overflow: hidden;"> | |
| <div style="width: 100%; height: 100%; background-color: #4B0082; animation: loading 1.5s linear infinite;"></div> | |
| </div> | |
| </div> | |
| <style> | |
| @keyframes loading {{ | |
| 0% {{ transform: translateX(-100%); }} | |
| 100% {{ transform: translateX(100%); }} | |
| }} | |
| </style> | |
| ''' | |
| def downsample_video(video_path): | |
| """ | |
| Downsamples the video to 10 evenly spaced frames. | |
| Each frame is converted to a PIL Image along with its timestamp. | |
| """ | |
| vidcap = cv2.VideoCapture(video_path) | |
| total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT)) | |
| fps = vidcap.get(cv2.CAP_PROP_FPS) | |
| frames = [] | |
| if total_frames <= 0 or fps <= 0: | |
| vidcap.release() | |
| return frames | |
| # Sample 10 evenly spaced frames. | |
| frame_indices = np.linspace(0, total_frames - 1, 10, dtype=int) | |
| for i in frame_indices: | |
| vidcap.set(cv2.CAP_PROP_POS_FRAMES, i) | |
| success, image = vidcap.read() | |
| if success: | |
| image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) | |
| pil_image = Image.fromarray(image) | |
| timestamp = round(i / fps, 2) | |
| frames.append((pil_image, timestamp)) | |
| vidcap.release() | |
| return frames | |
| MODEL_ID = "Qwen/Qwen2.5-VL-7B-Instruct" # Alternatively: "Qwen/Qwen2.5-VL-3B-Instruct" | |
| processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True) | |
| model = Qwen2_5_VLForConditionalGeneration.from_pretrained( | |
| MODEL_ID, | |
| trust_remote_code=True, | |
| torch_dtype=torch.bfloat16 | |
| ).to("cuda").eval() | |
| def model_inference(input_dict, history): | |
| text = input_dict["text"] | |
| files = input_dict["files"] | |
| if text.strip().lower().startswith("@video-infer"): | |
| # Remove the tag from the query. | |
| text = text[len("@video-infer"):].strip() | |
| if not files: | |
| gr.Error("Please upload a video file along with your @video-infer query.") | |
| return | |
| # Assume the first file is a video. | |
| video_path = files[0] | |
| frames = downsample_video(video_path) | |
| if not frames: | |
| gr.Error("Could not process video.") | |
| return | |
| # Build messages: start with the text prompt. | |
| messages = [ | |
| { | |
| "role": "user", | |
| "content": [{"type": "text", "text": text}] | |
| } | |
| ] | |
| # Append each frame with a timestamp label. | |
| for image, timestamp in frames: | |
| messages[0]["content"].append({"type": "text", "text": f"Frame {timestamp}:"}) | |
| messages[0]["content"].append({"type": "image", "image": image}) | |
| # Collect only the images from the frames. | |
| video_images = [image for image, _ in frames] | |
| # Prepare the prompt. | |
| prompt = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) | |
| inputs = processor( | |
| text=[prompt], | |
| images=video_images, | |
| return_tensors="pt", | |
| padding=True, | |
| ).to("cuda") | |
| # Set up streaming generation. | |
| streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True) | |
| generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024) | |
| thread = Thread(target=model.generate, kwargs=generation_kwargs) | |
| thread.start() | |
| buffer = "" | |
| yield progress_bar_html("Processing video with Qwen2.5VL Model") | |
| for new_text in streamer: | |
| buffer += new_text | |
| time.sleep(0.01) | |
| yield buffer | |
| return | |
| if len(files) > 1: | |
| images = [load_image(image) for image in files] | |
| elif len(files) == 1: | |
| images = [load_image(files[0])] | |
| else: | |
| images = [] | |
| if text == "" and not images: | |
| gr.Error("Please input a query and optionally image(s).") | |
| return | |
| if text == "" and images: | |
| gr.Error("Please input a text query along with the image(s).") | |
| return | |
| messages = [ | |
| { | |
| "role": "user", | |
| "content": [ | |
| *[{"type": "image", "image": image} for image in images], | |
| {"type": "text", "text": text}, | |
| ], | |
| } | |
| ] | |
| prompt = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) | |
| inputs = processor( | |
| text=[prompt], | |
| images=images if images else None, | |
| return_tensors="pt", | |
| padding=True, | |
| ).to("cuda") | |
| streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True) | |
| generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024) | |
| thread = Thread(target=model.generate, kwargs=generation_kwargs) | |
| thread.start() | |
| buffer = "" | |
| yield progress_bar_html("Processing with Qwen2.5VL Model") | |
| for new_text in streamer: | |
| buffer += new_text | |
| time.sleep(0.01) | |
| yield buffer | |
| examples = [ | |
| [{"text": "Describe the Image?", "files": ["example_images/document.jpg"]}], | |
| [{"text": "@video-infer Explain the content of the Advertisement", "files": ["example_images/videoplayback.mp4"]}], | |
| [{"text": "@video-infer Explain the content of the video in detail", "files": ["example_images/breakfast.mp4"]}], | |
| [{"text": "@video-infer Explain the content of the video.", "files": ["example_images/sky.mp4"]}], | |
| ] | |
| demo = gr.ChatInterface( | |
| fn=model_inference, | |
| description="# **Qwen2.5-VL-7B-Instruct `@video-infer for video understanding`**", | |
| examples=examples, | |
| fill_height=True, | |
| textbox=gr.MultimodalTextbox(label="Query Input", file_types=["image", "video"], file_count="multiple"), | |
| stop_btn="Stop Generation", | |
| multimodal=True, | |
| cache_examples=False, | |
| ) | |
| demo.launch(debug=True) |