Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -173,18 +173,14 @@ def annotate_image(image: Image.Image, result: dict):
|
|
| 173 |
|
| 174 |
@GPU
|
| 175 |
def process_qwen(image: Image.Image, category: str, prompt: str):
|
| 176 |
-
"""Processes the input based on the selected category using the Qwen model."""
|
| 177 |
if category == "Query":
|
| 178 |
return run_qwen_inference(image, prompt), {}
|
| 179 |
-
|
| 180 |
elif category == "Caption":
|
| 181 |
full_prompt = f"Provide a {prompt} length caption for the image."
|
| 182 |
return run_qwen_inference(image, full_prompt), {}
|
| 183 |
-
|
| 184 |
elif category == "Point":
|
| 185 |
full_prompt = (
|
| 186 |
-
f"Provide 2d point coordinates for {prompt}. Report in JSON format
|
| 187 |
-
`[{"point_2d": [x, y]}]` " where coordinates are from 0 to 1000."
|
| 188 |
)
|
| 189 |
output_text = run_qwen_inference(image, full_prompt)
|
| 190 |
parsed_json = safe_parse_json(output_text)
|
|
@@ -195,11 +191,9 @@ def process_qwen(image: Image.Image, category: str, prompt: str):
|
|
| 195 |
x, y = item["point_2d"]
|
| 196 |
points_result["points"].append({"x": x / 1000.0, "y": y / 1000.0})
|
| 197 |
return json.dumps(points_result, indent=2), points_result
|
| 198 |
-
|
| 199 |
elif category == "Detect":
|
| 200 |
full_prompt = (
|
| 201 |
-
f"Provide bounding box coordinates for {prompt}. Report in JSON format
|
| 202 |
-
`[{"bbox_2d": [xmin, ymin, xmax, ymax]}]` " where coordinates are from 0 to 1000."
|
| 203 |
)
|
| 204 |
output_text = run_qwen_inference(image, full_prompt)
|
| 205 |
parsed_json = safe_parse_json(output_text)
|
|
@@ -217,7 +211,6 @@ def process_qwen(image: Image.Image, category: str, prompt: str):
|
|
| 217 |
}
|
| 218 |
)
|
| 219 |
return json.dumps(objects_result, indent=2), objects_result
|
| 220 |
-
|
| 221 |
return "Invalid category", {}
|
| 222 |
|
| 223 |
|
|
|
|
| 173 |
|
| 174 |
@GPU
|
| 175 |
def process_qwen(image: Image.Image, category: str, prompt: str):
|
|
|
|
| 176 |
if category == "Query":
|
| 177 |
return run_qwen_inference(image, prompt), {}
|
|
|
|
| 178 |
elif category == "Caption":
|
| 179 |
full_prompt = f"Provide a {prompt} length caption for the image."
|
| 180 |
return run_qwen_inference(image, full_prompt), {}
|
|
|
|
| 181 |
elif category == "Point":
|
| 182 |
full_prompt = (
|
| 183 |
+
f"Provide 2d point coordinates for {prompt}. Report in JSON format."
|
|
|
|
| 184 |
)
|
| 185 |
output_text = run_qwen_inference(image, full_prompt)
|
| 186 |
parsed_json = safe_parse_json(output_text)
|
|
|
|
| 191 |
x, y = item["point_2d"]
|
| 192 |
points_result["points"].append({"x": x / 1000.0, "y": y / 1000.0})
|
| 193 |
return json.dumps(points_result, indent=2), points_result
|
|
|
|
| 194 |
elif category == "Detect":
|
| 195 |
full_prompt = (
|
| 196 |
+
f"Provide bounding box coordinates for {prompt}. Report in JSON format."
|
|
|
|
| 197 |
)
|
| 198 |
output_text = run_qwen_inference(image, full_prompt)
|
| 199 |
parsed_json = safe_parse_json(output_text)
|
|
|
|
| 211 |
}
|
| 212 |
)
|
| 213 |
return json.dumps(objects_result, indent=2), objects_result
|
|
|
|
| 214 |
return "Invalid category", {}
|
| 215 |
|
| 216 |
|