Spaces:
Running
on
Zero
Running
on
Zero
update app
Browse files
app.py
CHANGED
|
@@ -8,6 +8,7 @@ from threading import Thread
|
|
| 8 |
from pathlib import Path
|
| 9 |
from io import BytesIO
|
| 10 |
from typing import Optional, Tuple, Dict, Any, Iterable
|
|
|
|
| 11 |
|
| 12 |
import gradio as gr
|
| 13 |
import spaces
|
|
@@ -17,6 +18,7 @@ from PIL import Image
|
|
| 17 |
import cv2
|
| 18 |
import requests
|
| 19 |
import fitz
|
|
|
|
| 20 |
|
| 21 |
from transformers import (
|
| 22 |
Qwen3VLMoeForConditionalGeneration,
|
|
@@ -28,9 +30,6 @@ from transformers.image_utils import load_image
|
|
| 28 |
from gradio.themes import Soft
|
| 29 |
from gradio.themes.utils import colors, fonts, sizes
|
| 30 |
|
| 31 |
-
# --- Theme and CSS Definition ---
|
| 32 |
-
|
| 33 |
-
# Define the new OrangeRed color palette
|
| 34 |
colors.orange_red = colors.Color(
|
| 35 |
name="orange_red",
|
| 36 |
c50="#FFF0E5",
|
|
@@ -38,7 +37,7 @@ colors.orange_red = colors.Color(
|
|
| 38 |
c200="#FFC299",
|
| 39 |
c300="#FFA366",
|
| 40 |
c400="#FF8533",
|
| 41 |
-
c500="#FF4500",
|
| 42 |
c600="#E63E00",
|
| 43 |
c700="#CC3700",
|
| 44 |
c800="#B33000",
|
|
@@ -97,7 +96,6 @@ class OrangeRedTheme(Soft):
|
|
| 97 |
block_label_background_fill="*primary_200",
|
| 98 |
)
|
| 99 |
|
| 100 |
-
# Instantiate the new theme
|
| 101 |
orange_red_theme = OrangeRedTheme()
|
| 102 |
|
| 103 |
css = """
|
|
@@ -251,6 +249,74 @@ def navigate_pdf_page(direction: str, state: Dict[str, Any]):
|
|
| 251 |
page_info_html = f'<div style="text-align:center;">Page {new_index + 1} / {total_pages}</div>'
|
| 252 |
return image_preview, state, page_info_html
|
| 253 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 254 |
@spaces.GPU
|
| 255 |
def generate_image(text: str, image: Image.Image, max_new_tokens: int = 1024, temperature: float = 0.6, top_p: float = 0.9, top_k: int = 50, repetition_penalty: float = 1.2):
|
| 256 |
if image is None:
|
|
@@ -370,6 +436,65 @@ def generate_gif(text: str, gif_path: str, max_new_tokens: int = 1024, temperatu
|
|
| 370 |
time.sleep(0.01)
|
| 371 |
yield buffer, buffer
|
| 372 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 373 |
image_examples = [["Perform OCR on the image...", "examples/images/1.jpg"],
|
| 374 |
["Caption the image. Describe the safety measures shown in the image. Conclude whether the situation is (safe or unsafe)...", "examples/images/2.jpg"],
|
| 375 |
["Solve the problem...", "examples/images/3.png"]]
|
|
@@ -381,6 +506,11 @@ gif_examples = [["Describe this GIF.", "examples/gifs/1.gif"],
|
|
| 381 |
["Describe this GIF.", "examples/gifs/2.gif"]]
|
| 382 |
caption_examples = [["examples/captions/1.JPG"],
|
| 383 |
["examples/captions/2.jpeg"], ["examples/captions/3.jpeg"]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 384 |
|
| 385 |
with gr.Blocks(theme=orange_red_theme, css=css) as demo:
|
| 386 |
pdf_state = gr.State(value=get_initial_pdf_state())
|
|
@@ -394,11 +524,17 @@ with gr.Blocks(theme=orange_red_theme, css=css) as demo:
|
|
| 394 |
image_submit = gr.Button("Submit", variant="primary")
|
| 395 |
gr.Examples(examples=image_examples, inputs=[image_query, image_upload])
|
| 396 |
|
| 397 |
-
with gr.TabItem("
|
| 398 |
-
|
| 399 |
-
|
| 400 |
-
|
| 401 |
-
gr.Examples(examples=
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 402 |
|
| 403 |
with gr.TabItem("PDF Inference"):
|
| 404 |
with gr.Row():
|
|
@@ -424,6 +560,12 @@ with gr.Blocks(theme=orange_red_theme, css=css) as demo:
|
|
| 424 |
caption_image_upload = gr.Image(type="pil", label="Image to Caption", height=290)
|
| 425 |
caption_submit = gr.Button("Generate Caption", variant="primary")
|
| 426 |
gr.Examples(examples=caption_examples, inputs=[caption_image_upload])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 427 |
|
| 428 |
with gr.Accordion("Advanced options", open=False):
|
| 429 |
max_new_tokens = gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS)
|
|
@@ -434,12 +576,22 @@ with gr.Blocks(theme=orange_red_theme, css=css) as demo:
|
|
| 434 |
|
| 435 |
with gr.Column(scale=3):
|
| 436 |
gr.Markdown("## Output", elem_id="output-title")
|
| 437 |
-
output = gr.Textbox(label="Raw Output Stream", interactive=False, lines=14, show_copy_button=True)
|
| 438 |
-
|
| 439 |
-
markdown_output = gr.Markdown(label="(Result.Md)", latex_delimiters=[
|
| 440 |
{"left": "$$", "right": "$$", "display": True},
|
| 441 |
{"left": "$", "right": "$", "display": False}
|
| 442 |
-
])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 443 |
|
| 444 |
image_submit.click(fn=generate_image,
|
| 445 |
inputs=[image_query, image_upload, max_new_tokens, temperature, top_p, top_k, repetition_penalty],
|
|
@@ -456,6 +608,34 @@ with gr.Blocks(theme=orange_red_theme, css=css) as demo:
|
|
| 456 |
caption_submit.click(fn=generate_caption,
|
| 457 |
inputs=[caption_image_upload, max_new_tokens, temperature, top_p, top_k, repetition_penalty],
|
| 458 |
outputs=[output, markdown_output])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 459 |
|
| 460 |
pdf_upload.change(fn=load_and_preview_pdf, inputs=[pdf_upload], outputs=[pdf_preview_img, pdf_state, page_info])
|
| 461 |
prev_page_btn.click(fn=lambda s: navigate_pdf_page("prev", s), inputs=[pdf_state], outputs=[pdf_preview_img, pdf_state, page_info])
|
|
|
|
| 8 |
from pathlib import Path
|
| 9 |
from io import BytesIO
|
| 10 |
from typing import Optional, Tuple, Dict, Any, Iterable
|
| 11 |
+
import re
|
| 12 |
|
| 13 |
import gradio as gr
|
| 14 |
import spaces
|
|
|
|
| 18 |
import cv2
|
| 19 |
import requests
|
| 20 |
import fitz
|
| 21 |
+
import supervision as sv
|
| 22 |
|
| 23 |
from transformers import (
|
| 24 |
Qwen3VLMoeForConditionalGeneration,
|
|
|
|
| 30 |
from gradio.themes import Soft
|
| 31 |
from gradio.themes.utils import colors, fonts, sizes
|
| 32 |
|
|
|
|
|
|
|
|
|
|
| 33 |
colors.orange_red = colors.Color(
|
| 34 |
name="orange_red",
|
| 35 |
c50="#FFF0E5",
|
|
|
|
| 37 |
c200="#FFC299",
|
| 38 |
c300="#FFA366",
|
| 39 |
c400="#FF8533",
|
| 40 |
+
c500="#FF4500",
|
| 41 |
c600="#E63E00",
|
| 42 |
c700="#CC3700",
|
| 43 |
c800="#B33000",
|
|
|
|
| 96 |
block_label_background_fill="*primary_200",
|
| 97 |
)
|
| 98 |
|
|
|
|
| 99 |
orange_red_theme = OrangeRedTheme()
|
| 100 |
|
| 101 |
css = """
|
|
|
|
| 249 |
page_info_html = f'<div style="text-align:center;">Page {new_index + 1} / {total_pages}</div>'
|
| 250 |
return image_preview, state, page_info_html
|
| 251 |
|
| 252 |
+
def draw_boxes_on_image(image: Image.Image, text_output: str, object_name: str) -> Tuple[Image.Image, str]:
|
| 253 |
+
try:
|
| 254 |
+
# Extract the JSON part of the text output
|
| 255 |
+
match = re.search(r'\[\s*\[.*?\]\s*\]', text_output, re.DOTALL)
|
| 256 |
+
if not match:
|
| 257 |
+
return image, f"Could not find coordinates in the model output: {text_output}"
|
| 258 |
+
|
| 259 |
+
boxes_str = match.group(0)
|
| 260 |
+
boxes = json.loads(boxes_str)
|
| 261 |
+
|
| 262 |
+
if not boxes or not isinstance(boxes[0], list):
|
| 263 |
+
return image, f"No valid boxes found in parsed data: {boxes}"
|
| 264 |
+
|
| 265 |
+
width, height = image.size
|
| 266 |
+
np_image = np.array(image.convert("RGB"))
|
| 267 |
+
|
| 268 |
+
# Denormalize coordinates
|
| 269 |
+
xyxy = []
|
| 270 |
+
for box in boxes:
|
| 271 |
+
x1, y1, x2, y2 = box
|
| 272 |
+
xyxy.append([x1 * width, y1 * height, x2 * width, y2 * height])
|
| 273 |
+
|
| 274 |
+
detections = sv.Detections(xyxy=np.array(xyxy))
|
| 275 |
+
|
| 276 |
+
bounding_box_annotator = sv.BoxAnnotator(thickness=2)
|
| 277 |
+
label_annotator = sv.LabelAnnotator(text_thickness=1, text_scale=0.5)
|
| 278 |
+
|
| 279 |
+
labels = [f"{object_name} #{i+1}" for i in range(len(detections))]
|
| 280 |
+
|
| 281 |
+
annotated_image = bounding_box_annotator.annotate(scene=np_image.copy(), detections=detections)
|
| 282 |
+
annotated_image = label_annotator.annotate(scene=annotated_image, detections=detections, labels=labels)
|
| 283 |
+
|
| 284 |
+
return Image.fromarray(annotated_image), text_output
|
| 285 |
+
except (json.JSONDecodeError, IndexError, TypeError) as e:
|
| 286 |
+
return image, f"Failed to parse or draw boxes. Error: {e}\nModel Output:\n{text_output}"
|
| 287 |
+
|
| 288 |
+
def draw_points_on_image(image: Image.Image, text_output: str) -> Tuple[Image.Image, str]:
|
| 289 |
+
try:
|
| 290 |
+
match = re.search(r'\[\s*\[.*?\]\s*\]', text_output, re.DOTALL)
|
| 291 |
+
if not match:
|
| 292 |
+
return image, f"Could not find coordinates in the model output: {text_output}"
|
| 293 |
+
|
| 294 |
+
points_str = match.group(0)
|
| 295 |
+
points = json.loads(points_str)
|
| 296 |
+
|
| 297 |
+
if not points or not isinstance(points[0], list):
|
| 298 |
+
return image, f"No valid points found in parsed data: {points}"
|
| 299 |
+
|
| 300 |
+
width, height = image.size
|
| 301 |
+
np_image = np.array(image.convert("RGB"))
|
| 302 |
+
|
| 303 |
+
# Denormalize coordinates
|
| 304 |
+
xy = []
|
| 305 |
+
for point in points:
|
| 306 |
+
x, y = point
|
| 307 |
+
xy.append([x * width, y * height])
|
| 308 |
+
|
| 309 |
+
points_array = np.array(xy).reshape(1, -1, 2)
|
| 310 |
+
key_points = sv.KeyPoints(xy=points_array)
|
| 311 |
+
|
| 312 |
+
point_annotator = sv.VertexAnnotator(radius=5, color=sv.Color.RED)
|
| 313 |
+
annotated_image = point_annotator.annotate(scene=np_image.copy(), key_points=key_points)
|
| 314 |
+
|
| 315 |
+
return Image.fromarray(annotated_image), text_output
|
| 316 |
+
except (json.JSONDecodeError, IndexError, TypeError) as e:
|
| 317 |
+
return image, f"Failed to parse or draw points. Error: {e}\nModel Output:\n{text_output}"
|
| 318 |
+
|
| 319 |
+
|
| 320 |
@spaces.GPU
|
| 321 |
def generate_image(text: str, image: Image.Image, max_new_tokens: int = 1024, temperature: float = 0.6, top_p: float = 0.9, top_k: int = 50, repetition_penalty: float = 1.2):
|
| 322 |
if image is None:
|
|
|
|
| 436 |
time.sleep(0.01)
|
| 437 |
yield buffer, buffer
|
| 438 |
|
| 439 |
+
@spaces.GPU
|
| 440 |
+
def generate_object_detection(image: Image.Image, text: str, max_new_tokens: int = 256, temperature: float = 0.6, top_p: float = 0.9, top_k: int = 50, repetition_penalty: float = 1.2):
|
| 441 |
+
if image is None:
|
| 442 |
+
yield image, "Please upload an image."
|
| 443 |
+
return
|
| 444 |
+
if not text:
|
| 445 |
+
yield image, "Please enter the object name to detect."
|
| 446 |
+
return
|
| 447 |
+
|
| 448 |
+
prompt = (
|
| 449 |
+
f"You are an expert object detection model. Your task is to find all instances of '{text}' in the image. "
|
| 450 |
+
"You must respond ONLY with a JSON list of bounding boxes. Each bounding box must be in the format "
|
| 451 |
+
"[x_min, y_min, x_max, y_max], where the coordinates are normalized to be between 0 and 1. "
|
| 452 |
+
"Do not provide any other text, explanation, or preamble. For example: [[0.1, 0.2, 0.3, 0.4], [0.5, 0.6, 0.7, 0.8]]"
|
| 453 |
+
)
|
| 454 |
+
|
| 455 |
+
messages = [{"role": "user", "content": [{"type": "image"}, {"type": "text", "text": prompt}]}]
|
| 456 |
+
prompt_full = processor_q3vl.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
| 457 |
+
inputs = processor_q3vl(text=[prompt_full], images=[image], return_tensors="pt", padding=True).to(device)
|
| 458 |
+
|
| 459 |
+
# This task is not streamed because we need the full output to parse and draw boxes
|
| 460 |
+
outputs = model_q3vl.generate(**inputs, max_new_tokens=max_new_tokens, do_sample=False)
|
| 461 |
+
response_text = processor_q3vl.decode(outputs[0], skip_special_tokens=True).strip()
|
| 462 |
+
|
| 463 |
+
# Extract only the user-facing part of the response
|
| 464 |
+
final_text = response_text.split('<|im_end|>')[-1].strip() if '<|im_end|>' in response_text else response_text
|
| 465 |
+
|
| 466 |
+
annotated_image, raw_output = draw_boxes_on_image(image, final_text, text)
|
| 467 |
+
yield annotated_image, raw_output
|
| 468 |
+
|
| 469 |
+
@spaces.GPU
|
| 470 |
+
def generate_point_detection(image: Image.Image, text: str, max_new_tokens: int = 256, temperature: float = 0.6, top_p: float = 0.9, top_k: int = 50, repetition_penalty: float = 1.2):
|
| 471 |
+
if image is None:
|
| 472 |
+
yield image, "Please upload an image."
|
| 473 |
+
return
|
| 474 |
+
if not text:
|
| 475 |
+
yield image, "Please enter the object/point name to detect."
|
| 476 |
+
return
|
| 477 |
+
|
| 478 |
+
prompt = (
|
| 479 |
+
f"You are an expert point detection model. Your task is to find the specific location of '{text}' in the image. "
|
| 480 |
+
"You must respond ONLY with a JSON list containing a single coordinate pair. The coordinate must be in the format "
|
| 481 |
+
"[[x, y]], where the coordinates are normalized to be between 0 and 1. "
|
| 482 |
+
"Do not provide any other text, explanation, or preamble. For example: [[0.45, 0.67]]"
|
| 483 |
+
)
|
| 484 |
+
|
| 485 |
+
messages = [{"role": "user", "content": [{"type": "image"}, {"type": "text", "text": prompt}]}]
|
| 486 |
+
prompt_full = processor_q3vl.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
| 487 |
+
inputs = processor_q3vl(text=[prompt_full], images=[image], return_tensors="pt", padding=True).to(device)
|
| 488 |
+
|
| 489 |
+
outputs = model_q3vl.generate(**inputs, max_new_tokens=max_new_tokens, do_sample=False)
|
| 490 |
+
response_text = processor_q3vl.decode(outputs[0], skip_special_tokens=True).strip()
|
| 491 |
+
|
| 492 |
+
final_text = response_text.split('<|im_end|>')[-1].strip() if '<|im_end|>' in response_text else response_text
|
| 493 |
+
|
| 494 |
+
annotated_image, raw_output = draw_points_on_image(image, final_text)
|
| 495 |
+
yield annotated_image, raw_output
|
| 496 |
+
|
| 497 |
+
|
| 498 |
image_examples = [["Perform OCR on the image...", "examples/images/1.jpg"],
|
| 499 |
["Caption the image. Describe the safety measures shown in the image. Conclude whether the situation is (safe or unsafe)...", "examples/images/2.jpg"],
|
| 500 |
["Solve the problem...", "examples/images/3.png"]]
|
|
|
|
| 506 |
["Describe this GIF.", "examples/gifs/2.gif"]]
|
| 507 |
caption_examples = [["examples/captions/1.JPG"],
|
| 508 |
["examples/captions/2.jpeg"], ["examples/captions/3.jpeg"]]
|
| 509 |
+
object_detection_examples = [["a cat", "examples/detection/cat_dog.jpg"],
|
| 510 |
+
["the person in the red shirt", "examples/detection/people.jpg"]]
|
| 511 |
+
point_detection_examples = [["the dog's nose", "examples/detection/cat_dog.jpg"],
|
| 512 |
+
["the clock on the wall", "examples/detection/room.jpg"]]
|
| 513 |
+
|
| 514 |
|
| 515 |
with gr.Blocks(theme=orange_red_theme, css=css) as demo:
|
| 516 |
pdf_state = gr.State(value=get_initial_pdf_state())
|
|
|
|
| 524 |
image_submit = gr.Button("Submit", variant="primary")
|
| 525 |
gr.Examples(examples=image_examples, inputs=[image_query, image_upload])
|
| 526 |
|
| 527 |
+
with gr.TabItem("Object Detection"):
|
| 528 |
+
obj_det_query = gr.Textbox(label="Object to Detect", placeholder="e.g., 'a car', 'the dog'")
|
| 529 |
+
obj_det_upload = gr.Image(type="pil", label="Upload Image", height=290)
|
| 530 |
+
obj_det_submit = gr.Button("Detect Objects", variant="primary")
|
| 531 |
+
gr.Examples(examples=object_detection_examples, inputs=[obj_det_query, obj_det_upload])
|
| 532 |
+
|
| 533 |
+
with gr.TabItem("Point Detection"):
|
| 534 |
+
point_det_query = gr.Textbox(label="Point to Detect", placeholder="e.g., 'the cat's left eye'")
|
| 535 |
+
point_det_upload = gr.Image(type="pil", label="Upload Image", height=290)
|
| 536 |
+
point_det_submit = gr.Button("Detect Point", variant="primary")
|
| 537 |
+
gr.Examples(examples=point_detection_examples, inputs=[point_det_query, point_det_upload])
|
| 538 |
|
| 539 |
with gr.TabItem("PDF Inference"):
|
| 540 |
with gr.Row():
|
|
|
|
| 560 |
caption_image_upload = gr.Image(type="pil", label="Image to Caption", height=290)
|
| 561 |
caption_submit = gr.Button("Generate Caption", variant="primary")
|
| 562 |
gr.Examples(examples=caption_examples, inputs=[caption_image_upload])
|
| 563 |
+
|
| 564 |
+
with gr.TabItem("Video Inference"):
|
| 565 |
+
video_query = gr.Textbox(label="Query Input", placeholder="Enter your query here...")
|
| 566 |
+
video_upload = gr.Video(label="Upload Video(≤30s)", height=290)
|
| 567 |
+
video_submit = gr.Button("Submit", variant="primary")
|
| 568 |
+
gr.Examples(examples=video_examples, inputs=[video_query, video_upload])
|
| 569 |
|
| 570 |
with gr.Accordion("Advanced options", open=False):
|
| 571 |
max_new_tokens = gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS)
|
|
|
|
| 576 |
|
| 577 |
with gr.Column(scale=3):
|
| 578 |
gr.Markdown("## Output", elem_id="output-title")
|
| 579 |
+
output = gr.Textbox(label="Raw Output Stream", interactive=False, lines=14, show_copy_button=True, visible=True)
|
| 580 |
+
markdown_output = gr.Markdown(label="(Result.Md)", latex_delimiters=[
|
|
|
|
| 581 |
{"left": "$$", "right": "$$", "display": True},
|
| 582 |
{"left": "$", "right": "$", "display": False}
|
| 583 |
+
], visible=True)
|
| 584 |
+
annotated_image_output = gr.Image(label="Annotated Image", visible=False)
|
| 585 |
+
raw_detection_output = gr.Textbox(label="Raw Detection Output", interactive=False, lines=4, show_copy_button=True, visible=False)
|
| 586 |
+
|
| 587 |
+
def switch_output_visibility(tab_name):
|
| 588 |
+
is_detection = tab_name in ["Object Detection", "Point Detection"]
|
| 589 |
+
return {
|
| 590 |
+
output: gr.update(visible=not is_detection),
|
| 591 |
+
markdown_output: gr.update(visible=not is_detection),
|
| 592 |
+
annotated_image_output: gr.update(visible=is_detection),
|
| 593 |
+
raw_detection_output: gr.update(visible=is_detection),
|
| 594 |
+
}
|
| 595 |
|
| 596 |
image_submit.click(fn=generate_image,
|
| 597 |
inputs=[image_query, image_upload, max_new_tokens, temperature, top_p, top_k, repetition_penalty],
|
|
|
|
| 608 |
caption_submit.click(fn=generate_caption,
|
| 609 |
inputs=[caption_image_upload, max_new_tokens, temperature, top_p, top_k, repetition_penalty],
|
| 610 |
outputs=[output, markdown_output])
|
| 611 |
+
|
| 612 |
+
obj_det_submit.click(
|
| 613 |
+
fn=lambda: {
|
| 614 |
+
annotated_image_output: gr.update(visible=True),
|
| 615 |
+
raw_detection_output: gr.update(visible=True),
|
| 616 |
+
output: gr.update(visible=False),
|
| 617 |
+
markdown_output: gr.update(visible=False)
|
| 618 |
+
},
|
| 619 |
+
outputs=[annotated_image_output, raw_detection_output, output, markdown_output]
|
| 620 |
+
).then(
|
| 621 |
+
fn=generate_object_detection,
|
| 622 |
+
inputs=[obj_det_upload, obj_det_query, max_new_tokens, temperature, top_p, top_k, repetition_penalty],
|
| 623 |
+
outputs=[annotated_image_output, raw_detection_output]
|
| 624 |
+
)
|
| 625 |
+
|
| 626 |
+
point_det_submit.click(
|
| 627 |
+
fn=lambda: {
|
| 628 |
+
annotated_image_output: gr.update(visible=True),
|
| 629 |
+
raw_detection_output: gr.update(visible=True),
|
| 630 |
+
output: gr.update(visible=False),
|
| 631 |
+
markdown_output: gr.update(visible=False)
|
| 632 |
+
},
|
| 633 |
+
outputs=[annotated_image_output, raw_detection_output, output, markdown_output]
|
| 634 |
+
).then(
|
| 635 |
+
fn=generate_point_detection,
|
| 636 |
+
inputs=[point_det_upload, point_det_query, max_new_tokens, temperature, top_p, top_k, repetition_penalty],
|
| 637 |
+
outputs=[annotated_image_output, raw_detection_output]
|
| 638 |
+
)
|
| 639 |
|
| 640 |
pdf_upload.change(fn=load_and_preview_pdf, inputs=[pdf_upload], outputs=[pdf_preview_img, pdf_state, page_info])
|
| 641 |
prev_page_btn.click(fn=lambda s: navigate_pdf_page("prev", s), inputs=[pdf_state], outputs=[pdf_preview_img, pdf_state, page_info])
|