Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
from transformers import AutoProcessor, Qwen2_5_VLForConditionalGeneration, TextIteratorStreamer | |
from transformers.image_utils import load_image | |
from threading import Thread | |
import time | |
import torch | |
import spaces | |
MODEL_ID = "Qwen/Qwen2.5-VL-3B-Instruct" | |
processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True) | |
model = Qwen2_5_VLForConditionalGeneration.from_pretrained( | |
MODEL_ID, | |
trust_remote_code=True, | |
torch_dtype=torch.bfloat16 | |
).to("cuda").eval() | |
def model_inference(input_dict, history): | |
text = input_dict["text"] | |
files = input_dict["files"] | |
# Load images if provided | |
if len(files) > 1: | |
images = [load_image(image) for image in files] | |
elif len(files) == 1: | |
images = [load_image(files[0])] | |
else: | |
images = [] | |
# Validate input | |
if text == "" and not images: | |
gr.Error("Please input a query and optionally image(s).") | |
return | |
if text == "" and images: | |
gr.Error("Please input a text query along with the image(s).") | |
return | |
# Prepare messages for the model | |
messages = [ | |
{ | |
"role": "user", | |
"content": [ | |
*[{"type": "image", "image": image} for image in images], | |
{"type": "text", "text": text}, | |
], | |
} | |
] | |
# Apply chat template and process inputs | |
prompt = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) | |
inputs = processor( | |
text=[prompt], | |
images=images if images else None, | |
return_tensors="pt", | |
padding=True, | |
).to("cuda") | |
# Set up streamer for real-time output | |
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True) | |
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024) | |
# Start generation in a separate thread | |
thread = Thread(target=model.generate, kwargs=generation_kwargs) | |
thread.start() | |
# Stream the output | |
buffer = "" | |
yield "Thinking..." | |
for new_text in streamer: | |
buffer += new_text | |
time.sleep(0.01) | |
yield buffer | |
# Example inputs | |
examples = [ | |
[{"text": "Describe the document?", "files": ["example_images/document.jpg"]}], | |
[{"text": "Describe this image.", "files": ["example_images/campeones.jpg"]}], | |
[{"text": "What does this say?", "files": ["example_images/math.jpg"]}], | |
[{"text": "What is this UI about?", "files": ["example_images/s2w_example.png"]}], | |
[{"text": "Can you describe this image?", "files": ["example_images/newyork.jpg"]}], | |
[{"text": "Can you describe this image?", "files": ["example_images/dogs.jpg"]}], | |
[{"text": "Where do the severe droughts happen according to this diagram?", "files": ["example_images/examples_weather_events.png"]}], | |
] | |
demo = gr.ChatInterface( | |
fn=model_inference, | |
description="# **Qwen2.5-VL-3B-Instruct**", | |
examples=examples, | |
textbox=gr.MultimodalTextbox(label="Query Input", file_types=["image"], file_count="multiple"), | |
stop_btn="Stop Generation", | |
multimodal=True, | |
cache_examples=False, | |
) | |
demo.launch(debug=True) |