Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
import spaces | |
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor, TextIteratorStreamer | |
from qwen_vl_utils import process_vision_info | |
import torch | |
from PIL import Image | |
import os | |
import uuid | |
import io | |
from threading import Thread | |
from reportlab.lib.pagesizes import A4 | |
from reportlab.lib.styles import getSampleStyleSheet | |
from reportlab.lib import colors | |
from reportlab.platypus import SimpleDocTemplate, Image as RLImage, Paragraph, Spacer | |
from reportlab.lib.units import inch | |
from reportlab.pdfbase import pdfmetrics | |
from reportlab.pdfbase.ttfonts import TTFont | |
import docx | |
from docx.enum.text import WD_ALIGN_PARAGRAPH | |
# Define model options | |
MODEL_OPTIONS = { | |
"Qwen2VL Base": "Qwen/Qwen2-VL-2B-Instruct", | |
"Latex OCR": "prithivMLmods/Qwen2-VL-OCR-2B-Instruct", | |
"Math Prase": "prithivMLmods/Qwen2-VL-Math-Prase-2B-Instruct", | |
"Text Analogy Ocrtest": "prithivMLmods/Qwen2-VL-Ocrtest-2B-Instruct" | |
} | |
# Preload models and processors into CUDA | |
models = {} | |
processors = {} | |
for name, model_id in MODEL_OPTIONS.items(): | |
print(f"Loading {name}...") | |
models[name] = Qwen2VLForConditionalGeneration.from_pretrained( | |
model_id, | |
trust_remote_code=True, | |
torch_dtype=torch.float16 | |
).to("cuda").eval() | |
processors[name] = AutoProcessor.from_pretrained(model_id, trust_remote_code=True) | |
image_extensions = Image.registered_extensions() | |
def identify_and_save_blob(blob_path): | |
"""Identifies if the blob is an image and saves it.""" | |
try: | |
with open(blob_path, 'rb') as file: | |
blob_content = file.read() | |
try: | |
Image.open(io.BytesIO(blob_content)).verify() # Check if it's a valid image | |
extension = ".png" # Default to PNG for saving | |
media_type = "image" | |
except (IOError, SyntaxError): | |
raise ValueError("Unsupported media type. Please upload a valid image.") | |
filename = f"temp_{uuid.uuid4()}_media{extension}" | |
with open(filename, "wb") as f: | |
f.write(blob_content) | |
return filename, media_type | |
except FileNotFoundError: | |
raise ValueError(f"The file {blob_path} was not found.") | |
except Exception as e: | |
raise ValueError(f"An error occurred while processing the file: {e}") | |
def qwen_inference(model_name, media_input, text_input=None): | |
"""Handles inference for the selected model.""" | |
model = models[model_name] | |
processor = processors[model_name] | |
if isinstance(media_input, str): | |
media_path = media_input | |
if media_path.endswith(tuple([i for i in image_extensions.keys()])): | |
media_type = "image" | |
else: | |
try: | |
media_path, media_type = identify_and_save_blob(media_input) | |
except Exception as e: | |
raise ValueError("Unsupported media type. Please upload a valid image.") | |
messages = [ | |
{ | |
"role": "user", | |
"content": [ | |
{ | |
"type": media_type, | |
media_type: media_path | |
}, | |
{"type": "text", "text": text_input}, | |
], | |
} | |
] | |
text = processor.apply_chat_template( | |
messages, tokenize=False, add_generation_prompt=True | |
) | |
image_inputs, _ = process_vision_info(messages) | |
inputs = processor( | |
text=[text], | |
images=image_inputs, | |
padding=True, | |
return_tensors="pt", | |
).to("cuda") | |
streamer = TextIteratorStreamer( | |
processor.tokenizer, skip_prompt=True, skip_special_tokens=True | |
) | |
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024) | |
thread = Thread(target=model.generate, kwargs=generation_kwargs) | |
thread.start() | |
buffer = "" | |
for new_text in streamer: | |
buffer += new_text | |
# Remove <|im_end|> or similar tokens from the output | |
buffer = buffer.replace("<|im_end|>", "") | |
yield buffer | |
def format_plain_text(output_text): | |
"""Formats the output text as plain text without LaTeX delimiters.""" | |
# Remove LaTeX delimiters and convert to plain text | |
plain_text = output_text.replace("\\(", "").replace("\\)", "").replace("\\[", "").replace("\\]", "") | |
return plain_text | |
def generate_document(media_path, output_text, file_format, font_choice, font_size, line_spacing, alignment, image_size): | |
"""Generates a document with the input image and plain text output.""" | |
plain_text = format_plain_text(output_text) | |
if file_format == "pdf": | |
return generate_pdf(media_path, plain_text, font_choice, font_size, line_spacing, alignment, image_size) | |
elif file_format == "docx": | |
return generate_docx(media_path, plain_text, font_choice, font_size, line_spacing, alignment, image_size) | |
def generate_pdf(media_path, plain_text, font_choice, font_size, line_spacing, alignment, image_size): | |
"""Generates a PDF document.""" | |
filename = f"output_{uuid.uuid4()}.pdf" | |
doc = SimpleDocTemplate( | |
filename, | |
pagesize=A4, | |
rightMargin=inch, | |
leftMargin=inch, | |
topMargin=inch, | |
bottomMargin=inch | |
) | |
styles = getSampleStyleSheet() | |
styles["Normal"].fontName = font_choice | |
styles["Normal"].fontSize = int(font_size) | |
styles["Normal"].leading = int(font_size) * line_spacing | |
styles["Normal"].alignment = { | |
"Left": 0, | |
"Center": 1, | |
"Right": 2, | |
"Justified": 4 | |
}[alignment] | |
# Register font | |
font_path = f"font/{font_choice}" | |
pdfmetrics.registerFont(TTFont(font_choice, font_path)) | |
story = [] | |
# Add image with size adjustment | |
image_sizes = { | |
"Small": (200, 200), | |
"Medium": (400, 400), | |
"Large": (600, 600) | |
} | |
img = RLImage(media_path, width=image_sizes[image_size][0], height=image_sizes[image_size][1]) | |
story.append(img) | |
story.append(Spacer(1, 12)) | |
# Add plain text output | |
text = Paragraph(plain_text, styles["Normal"]) | |
story.append(text) | |
doc.build(story) | |
return filename | |
def generate_docx(media_path, plain_text, font_choice, font_size, line_spacing, alignment, image_size): | |
"""Generates a DOCX document.""" | |
filename = f"output_{uuid.uuid4()}.docx" | |
doc = docx.Document() | |
# Add image with size adjustment | |
image_sizes = { | |
"Small": docx.shared.Inches(2), | |
"Medium": docx.shared.Inches(4), | |
"Large": docx.shared.Inches(6) | |
} | |
doc.add_picture(media_path, width=image_sizes[image_size]) | |
doc.add_paragraph() | |
# Add plain text output | |
paragraph = doc.add_paragraph() | |
paragraph.paragraph_format.line_spacing = line_spacing | |
paragraph.paragraph_format.alignment = { | |
"Left": WD_ALIGN_PARAGRAPH.LEFT, | |
"Center": WD_ALIGN_PARAGRAPH.CENTER, | |
"Right": WD_ALIGN_PARAGRAPH.RIGHT, | |
"Justified": WD_ALIGN_PARAGRAPH.JUSTIFY | |
}[alignment] | |
run = paragraph.add_run(plain_text) | |
run.font.name = font_choice | |
run.font.size = docx.shared.Pt(int(font_size)) | |
doc.save(filename) | |
return filename | |
# CSS for output styling | |
css = """ | |
#output { | |
height: 500px; | |
overflow: auto; | |
border: 1px solid #ccc; | |
} | |
.submit-btn { | |
background-color: #cf3434 !important; | |
color: white !important; | |
} | |
.submit-btn:hover { | |
background-color: #ff2323 !important; | |
} | |
.download-btn { | |
background-color: #35a6d6 !important; | |
color: white !important; | |
} | |
.download-btn:hover { | |
background-color: #22bcff !important; | |
} | |
""" | |
# Gradio app setup | |
with gr.Blocks(css=css) as demo: | |
gr.Markdown("# Qwen2VL Models: Vision and Language Processing") | |
with gr.Tab(label="Image Input"): | |
with gr.Row(): | |
with gr.Column(): | |
model_choice = gr.Dropdown( | |
label="Model Selection", | |
choices=list(MODEL_OPTIONS.keys()), | |
value="Latex OCR" | |
) | |
input_media = gr.File( | |
label="Upload Image", type="filepath" | |
) | |
text_input = gr.Textbox(label="Question", placeholder="Ask a question about the image...") | |
submit_btn = gr.Button(value="Submit", elem_classes="submit-btn") | |
with gr.Column(): | |
output_text = gr.Textbox(label="Output Text", lines=10) | |
plain_text_output = gr.Textbox(label="Standardized Plain Text", lines=10) | |
submit_btn.click( | |
qwen_inference, [model_choice, input_media, text_input], [output_text] | |
).then( | |
lambda output_text: format_plain_text(output_text), [output_text], [plain_text_output] | |
) | |
# Add examples directly usable by clicking | |
with gr.Row(): | |
gr.Examples( | |
examples=[ | |
["examples/1.png", "summarize the letter", "Text Analogy Ocrtest"], | |
["examples/2.jpg", "Summarize the full image in detail", "Latex OCR"], | |
["examples/3.png", "Describe the photo", "Qwen2VL Base"], | |
["examples/4.png", "summarize and solve the problem", "Math Prase"], | |
], | |
inputs=[input_media, text_input, model_choice], | |
outputs=[output_text, plain_text_output], | |
fn=lambda img, question, model: qwen_inference(model, img, question), | |
cache_examples=False, | |
) | |
with gr.Row(): | |
with gr.Column(): | |
line_spacing = gr.Dropdown( | |
choices=[0.5, 1.0, 1.15, 1.5, 2.0, 2.5, 3.0], | |
value=1.5, | |
label="Line Spacing" | |
) | |
font_size = gr.Dropdown( | |
choices=["8", "10", "12", "14", "16", "18", "20", "22", "24"], | |
value="18", | |
label="Font Size" | |
) | |
font_choice = gr.Dropdown( | |
choices=[ | |
"DejaVuMathTeXGyre.ttf", | |
"FiraCode-Medium.ttf", | |
"InputMono-Light.ttf", | |
"JetBrainsMono-Thin.ttf", | |
"ProggyCrossed Regular Mac.ttf", | |
"SourceCodePro-Black.ttf", | |
"arial.ttf", | |
"calibri.ttf", | |
"mukta-malar-extralight.ttf", | |
"noto-sans-arabic-medium.ttf", | |
"times new roman.ttf", | |
"ANGSA.ttf", | |
"Book-Antiqua.ttf", | |
"CONSOLA.TTF", | |
"COOPBL.TTF", | |
"Rockwell-Bold.ttf", | |
"Candara Light.TTF", | |
"Carlito-Regular.ttf Carlito-Regular.ttf", | |
"Castellar.ttf", | |
"Courier New.ttf", | |
"LSANS.TTF", | |
"Lucida Bright Regular.ttf", | |
"TRTempusSansITC.ttf", | |
"Verdana.ttf", | |
"bell-mt.ttf", | |
"eras-itc-light.ttf", | |
"fonnts.com-aptos-light.ttf", | |
"georgia.ttf", | |
"segoeuithis.ttf", | |
"youyuan.TTF", | |
"TfPonetoneExpanded-7BJZA.ttf", | |
], | |
value="youyuan.TTF", | |
label="Font Choice" | |
) | |
alignment = gr.Dropdown( | |
choices=["Left", "Center", "Right", "Justified"], | |
value="Justified", | |
label="Text Alignment" | |
) | |
image_size = gr.Dropdown( | |
choices=["Small", "Medium", "Large"], | |
value="Small", | |
label="Image Size" | |
) | |
file_format = gr.Radio(["pdf", "docx"], label="File Format", value="pdf") | |
get_document_btn = gr.Button(value="Get Document", elem_classes="download-btn") | |
get_document_btn.click( | |
generate_document, [input_media, output_text, file_format, font_choice, font_size, line_spacing, alignment, image_size], gr.File(label="Download Document") | |
) | |
demo.launch(debug=True) |