Spaces:
Running
on
Zero
Running
on
Zero
update app
Browse files
app.py
CHANGED
|
@@ -1,22 +1,100 @@
|
|
| 1 |
import os
|
| 2 |
import sys
|
|
|
|
|
|
|
|
|
|
| 3 |
import time
|
| 4 |
from threading import Thread
|
|
|
|
|
|
|
| 5 |
|
| 6 |
import gradio as gr
|
| 7 |
import spaces
|
| 8 |
import torch
|
|
|
|
| 9 |
from PIL import Image
|
|
|
|
| 10 |
|
| 11 |
from transformers import (
|
| 12 |
Qwen2_5_VLForConditionalGeneration,
|
| 13 |
Qwen3VLForConditionalGeneration,
|
|
|
|
| 14 |
AutoModelForCausalLM,
|
| 15 |
AutoProcessor,
|
| 16 |
TextIteratorStreamer,
|
| 17 |
)
|
| 18 |
|
| 19 |
-
from
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
|
| 21 |
css = """
|
| 22 |
#main-title h1 {
|
|
@@ -44,6 +122,43 @@ if torch.cuda.is_available():
|
|
| 44 |
|
| 45 |
print("Using device:", device)
|
| 46 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 47 |
# Load Chandra-OCR
|
| 48 |
MODEL_ID_V = "datalab-to/chandra"
|
| 49 |
processor_v = AutoProcessor.from_pretrained(MODEL_ID_V, trust_remote_code=True)
|
|
@@ -82,7 +197,6 @@ model_m = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
|
| 82 |
torch_dtype=torch.float16
|
| 83 |
).to(device).eval()
|
| 84 |
|
| 85 |
-
|
| 86 |
@spaces.GPU
|
| 87 |
def generate_image(model_name: str, text: str, image: Image.Image,
|
| 88 |
max_new_tokens: int, temperature: float, top_p: float,
|
|
@@ -146,7 +260,6 @@ def generate_image(model_name: str, text: str, image: Image.Image,
|
|
| 146 |
time.sleep(0.01)
|
| 147 |
yield buffer, buffer
|
| 148 |
|
| 149 |
-
|
| 150 |
image_examples = [
|
| 151 |
["OCR the content perfectly.", "examples/3.jpg"],
|
| 152 |
["Perform OCR on the image.", "examples/1.jpg"],
|
|
@@ -167,30 +280,27 @@ with gr.Blocks(css=css, theme=steel_blue_theme) as demo:
|
|
| 167 |
)
|
| 168 |
|
| 169 |
with gr.Accordion("Advanced options", open=False):
|
| 170 |
-
max_new_tokens = gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1,
|
| 171 |
-
value=DEFAULT_MAX_NEW_TOKENS)
|
| 172 |
temperature = gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.7)
|
| 173 |
top_p = gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9)
|
| 174 |
top_k = gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50)
|
| 175 |
-
repetition_penalty = gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05,
|
| 176 |
-
value=1.1)
|
| 177 |
|
| 178 |
with gr.Column(scale=3):
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
|
| 190 |
image_submit.click(
|
| 191 |
fn=generate_image,
|
| 192 |
-
inputs=[model_choice, image_query, image_upload, max_new_tokens, temperature, top_p, top_k,
|
| 193 |
-
repetition_penalty],
|
| 194 |
outputs=[output, markdown_output]
|
| 195 |
)
|
| 196 |
|
|
|
|
| 1 |
import os
|
| 2 |
import sys
|
| 3 |
+
import random
|
| 4 |
+
import uuid
|
| 5 |
+
import json
|
| 6 |
import time
|
| 7 |
from threading import Thread
|
| 8 |
+
from typing import Iterable
|
| 9 |
+
from huggingface_hub import snapshot_download
|
| 10 |
|
| 11 |
import gradio as gr
|
| 12 |
import spaces
|
| 13 |
import torch
|
| 14 |
+
import numpy as np
|
| 15 |
from PIL import Image
|
| 16 |
+
import cv2
|
| 17 |
|
| 18 |
from transformers import (
|
| 19 |
Qwen2_5_VLForConditionalGeneration,
|
| 20 |
Qwen3VLForConditionalGeneration,
|
| 21 |
+
AutoModelForImageTextToText,
|
| 22 |
AutoModelForCausalLM,
|
| 23 |
AutoProcessor,
|
| 24 |
TextIteratorStreamer,
|
| 25 |
)
|
| 26 |
|
| 27 |
+
from transformers.image_utils import load_image
|
| 28 |
+
from gradio.themes import Soft
|
| 29 |
+
from gradio.themes.utils import colors, fonts, sizes
|
| 30 |
+
|
| 31 |
+
colors.steel_blue = colors.Color(
|
| 32 |
+
name="steel_blue",
|
| 33 |
+
c50="#EBF3F8",
|
| 34 |
+
c100="#D3E5F0",
|
| 35 |
+
c200="#A8CCE1",
|
| 36 |
+
c300="#7DB3D2",
|
| 37 |
+
c400="#529AC3",
|
| 38 |
+
c500="#4682B4",
|
| 39 |
+
c600="#3E72A0",
|
| 40 |
+
c700="#36638C",
|
| 41 |
+
c800="#2E5378",
|
| 42 |
+
c900="#264364",
|
| 43 |
+
c950="#1E3450",
|
| 44 |
+
)
|
| 45 |
+
|
| 46 |
+
class SteelBlueTheme(Soft):
|
| 47 |
+
def __init__(
|
| 48 |
+
self,
|
| 49 |
+
*,
|
| 50 |
+
primary_hue: colors.Color | str = colors.gray,
|
| 51 |
+
secondary_hue: colors.Color | str = colors.steel_blue,
|
| 52 |
+
neutral_hue: colors.Color | str = colors.slate,
|
| 53 |
+
text_size: sizes.Size | str = sizes.text_lg,
|
| 54 |
+
font: fonts.Font | str | Iterable[fonts.Font | str] = (
|
| 55 |
+
fonts.GoogleFont("Outfit"), "Arial", "sans-serif",
|
| 56 |
+
),
|
| 57 |
+
font_mono: fonts.Font | str | Iterable[fonts.Font | str] = (
|
| 58 |
+
fonts.GoogleFont("IBM Plex Mono"), "ui-monospace", "monospace",
|
| 59 |
+
),
|
| 60 |
+
):
|
| 61 |
+
super().__init__(
|
| 62 |
+
primary_hue=primary_hue,
|
| 63 |
+
secondary_hue=secondary_hue,
|
| 64 |
+
neutral_hue=neutral_hue,
|
| 65 |
+
text_size=text_size,
|
| 66 |
+
font=font,
|
| 67 |
+
font_mono=font_mono,
|
| 68 |
+
)
|
| 69 |
+
super().set(
|
| 70 |
+
background_fill_primary="*primary_50",
|
| 71 |
+
background_fill_primary_dark="*primary_900",
|
| 72 |
+
body_background_fill="linear-gradient(135deg, *primary_200, *primary_100)",
|
| 73 |
+
body_background_fill_dark="linear-gradient(135deg, *primary_900, *primary_800)",
|
| 74 |
+
button_primary_text_color="white",
|
| 75 |
+
button_primary_text_color_hover="white",
|
| 76 |
+
button_primary_background_fill="linear-gradient(90deg, *secondary_500, *secondary_600)",
|
| 77 |
+
button_primary_background_fill_hover="linear-gradient(90deg, *secondary_600, *secondary_700)",
|
| 78 |
+
button_primary_background_fill_dark="linear-gradient(90deg, *secondary_600, *secondary_800)",
|
| 79 |
+
button_primary_background_fill_hover_dark="linear-gradient(90deg, *secondary_500, *secondary_500)",
|
| 80 |
+
button_secondary_text_color="black",
|
| 81 |
+
button_secondary_text_color_hover="white",
|
| 82 |
+
button_secondary_background_fill="linear-gradient(90deg, *primary_300, *primary_300)",
|
| 83 |
+
button_secondary_background_fill_hover="linear-gradient(90deg, *primary_400, *primary_400)",
|
| 84 |
+
button_secondary_background_fill_dark="linear-gradient(90deg, *primary_500, *primary_600)",
|
| 85 |
+
button_secondary_background_fill_hover_dark="linear-gradient(90deg, *primary_500, *primary_500)",
|
| 86 |
+
slider_color="*secondary_500",
|
| 87 |
+
slider_color_dark="*secondary_600",
|
| 88 |
+
block_title_text_weight="600",
|
| 89 |
+
block_border_width="3px",
|
| 90 |
+
block_shadow="*shadow_drop_lg",
|
| 91 |
+
button_primary_shadow="*shadow_drop_lg",
|
| 92 |
+
button_large_padding="11px",
|
| 93 |
+
color_accent_soft="*primary_100",
|
| 94 |
+
block_label_background_fill="*primary_200",
|
| 95 |
+
)
|
| 96 |
+
|
| 97 |
+
steel_blue_theme = SteelBlueTheme()
|
| 98 |
|
| 99 |
css = """
|
| 100 |
#main-title h1 {
|
|
|
|
| 122 |
|
| 123 |
print("Using device:", device)
|
| 124 |
|
| 125 |
+
# CACHE_PATH = "./model_cache"
|
| 126 |
+
# if not os.path.exists(CACHE_PATH):
|
| 127 |
+
# os.makedirs(CACHE_PATH)
|
| 128 |
+
#
|
| 129 |
+
# model_path_d_local = snapshot_download(
|
| 130 |
+
# repo_id='rednote-hilab/dots.ocr',
|
| 131 |
+
# local_dir=os.path.join(CACHE_PATH, 'dots.ocr'),
|
| 132 |
+
# max_workers=20,
|
| 133 |
+
# local_dir_use_symlinks=False
|
| 134 |
+
# )
|
| 135 |
+
#
|
| 136 |
+
# config_file_path = os.path.join(model_path_d_local, "configuration_dots.py")
|
| 137 |
+
#
|
| 138 |
+
# if os.path.exists(config_file_path):
|
| 139 |
+
# with open(config_file_path, 'r') as f:
|
| 140 |
+
# input_code = f.read()
|
| 141 |
+
#
|
| 142 |
+
# lines = input_code.splitlines()
|
| 143 |
+
# if "class DotsVLProcessor" in input_code and not any("attributes = " in line for line in lines):
|
| 144 |
+
# output_lines = []
|
| 145 |
+
# for line in lines:
|
| 146 |
+
# output_lines.append(line)
|
| 147 |
+
# if line.strip().startswith("class DotsVLProcessor"):
|
| 148 |
+
# output_lines.append(" attributes = [\"image_processor\", \"tokenizer\"]")
|
| 149 |
+
#
|
| 150 |
+
# with open(config_file_path, 'w') as f:
|
| 151 |
+
# f.write('\n'.join(output_lines))
|
| 152 |
+
# print("Patched configuration_dots.py successfully.")
|
| 153 |
+
#
|
| 154 |
+
#sys.path.append(model_path_d_local)
|
| 155 |
+
|
| 156 |
+
MAX_MAX_NEW_TOKENS = 4096
|
| 157 |
+
DEFAULT_MAX_NEW_TOKENS = 2048
|
| 158 |
+
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
|
| 159 |
+
|
| 160 |
+
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
| 161 |
+
|
| 162 |
# Load Chandra-OCR
|
| 163 |
MODEL_ID_V = "datalab-to/chandra"
|
| 164 |
processor_v = AutoProcessor.from_pretrained(MODEL_ID_V, trust_remote_code=True)
|
|
|
|
| 197 |
torch_dtype=torch.float16
|
| 198 |
).to(device).eval()
|
| 199 |
|
|
|
|
| 200 |
@spaces.GPU
|
| 201 |
def generate_image(model_name: str, text: str, image: Image.Image,
|
| 202 |
max_new_tokens: int, temperature: float, top_p: float,
|
|
|
|
| 260 |
time.sleep(0.01)
|
| 261 |
yield buffer, buffer
|
| 262 |
|
|
|
|
| 263 |
image_examples = [
|
| 264 |
["OCR the content perfectly.", "examples/3.jpg"],
|
| 265 |
["Perform OCR on the image.", "examples/1.jpg"],
|
|
|
|
| 280 |
)
|
| 281 |
|
| 282 |
with gr.Accordion("Advanced options", open=False):
|
| 283 |
+
max_new_tokens = gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS)
|
|
|
|
| 284 |
temperature = gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.7)
|
| 285 |
top_p = gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9)
|
| 286 |
top_k = gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50)
|
| 287 |
+
repetition_penalty = gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.1)
|
|
|
|
| 288 |
|
| 289 |
with gr.Column(scale=3):
|
| 290 |
+
gr.Markdown("## Output", elem_id="output-title")
|
| 291 |
+
output = gr.Textbox(label="Raw Output Stream", interactive=False, lines=11, show_copy_button=True)
|
| 292 |
+
with gr.Accordion("(Result.md)", open=False):
|
| 293 |
+
markdown_output = gr.Markdown(label="(Result.Md)")
|
| 294 |
+
|
| 295 |
+
model_choice = gr.Radio(
|
| 296 |
+
choices=["Nanonets-OCR2-3B", "Chandra-OCR", "Dots.OCR", "olmOCR-2-7B-1025"],
|
| 297 |
+
label="Select Model",
|
| 298 |
+
value="Nanonets-OCR2-3B"
|
| 299 |
+
)
|
| 300 |
|
| 301 |
image_submit.click(
|
| 302 |
fn=generate_image,
|
| 303 |
+
inputs=[model_choice, image_query, image_upload, max_new_tokens, temperature, top_p, top_k, repetition_penalty],
|
|
|
|
| 304 |
outputs=[output, markdown_output]
|
| 305 |
)
|
| 306 |
|