Spaces:
Running
on
Zero
Running
on
Zero
| import os | |
| import sys | |
| import random | |
| import uuid | |
| import json | |
| import time | |
| from threading import Thread | |
| from typing import Iterable | |
| from huggingface_hub import snapshot_download | |
| import gradio as gr | |
| import spaces | |
| import torch | |
| import numpy as np | |
| from PIL import Image | |
| import cv2 | |
| from transformers import ( | |
| Qwen2_5_VLForConditionalGeneration, | |
| Qwen3VLForConditionalGeneration, | |
| AutoModelForImageTextToText, | |
| AutoModelForCausalLM, | |
| AutoProcessor, | |
| TextIteratorStreamer, | |
| ) | |
| from transformers.image_utils import load_image | |
| from gradio.themes import Soft | |
| from gradio.themes.utils import colors, fonts, sizes | |
| colors.steel_blue = colors.Color( | |
| name="steel_blue", | |
| c50="#EBF3F8", | |
| c100="#D3E5F0", | |
| c200="#A8CCE1", | |
| c300="#7DB3D2", | |
| c400="#529AC3", | |
| c500="#4682B4", | |
| c600="#3E72A0", | |
| c700="#36638C", | |
| c800="#2E5378", | |
| c900="#264364", | |
| c950="#1E3450", | |
| ) | |
| class SteelBlueTheme(Soft): | |
| def __init__( | |
| self, | |
| *, | |
| primary_hue: colors.Color | str = colors.gray, | |
| secondary_hue: colors.Color | str = colors.steel_blue, | |
| neutral_hue: colors.Color | str = colors.slate, | |
| text_size: sizes.Size | str = sizes.text_lg, | |
| font: fonts.Font | str | Iterable[fonts.Font | str] = ( | |
| fonts.GoogleFont("Outfit"), "Arial", "sans-serif", | |
| ), | |
| font_mono: fonts.Font | str | Iterable[fonts.Font | str] = ( | |
| fonts.GoogleFont("IBM Plex Mono"), "ui-monospace", "monospace", | |
| ), | |
| ): | |
| super().__init__( | |
| primary_hue=primary_hue, | |
| secondary_hue=secondary_hue, | |
| neutral_hue=neutral_hue, | |
| text_size=text_size, | |
| font=font, | |
| font_mono=font_mono, | |
| ) | |
| super().set( | |
| background_fill_primary="*primary_50", | |
| background_fill_primary_dark="*primary_900", | |
| body_background_fill="linear-gradient(135deg, *primary_200, *primary_100)", | |
| body_background_fill_dark="linear-gradient(135deg, *primary_900, *primary_800)", | |
| button_primary_text_color="white", | |
| button_primary_text_color_hover="white", | |
| button_primary_background_fill="linear-gradient(90deg, *secondary_500, *secondary_600)", | |
| button_primary_background_fill_hover="linear-gradient(90deg, *secondary_600, *secondary_700)", | |
| button_primary_background_fill_dark="linear-gradient(90deg, *secondary_600, *secondary_800)", | |
| button_primary_background_fill_hover_dark="linear-gradient(90deg, *secondary_500, *secondary_500)", | |
| button_secondary_text_color="black", | |
| button_secondary_text_color_hover="white", | |
| button_secondary_background_fill="linear-gradient(90deg, *primary_300, *primary_300)", | |
| button_secondary_background_fill_hover="linear-gradient(90deg, *primary_400, *primary_400)", | |
| button_secondary_background_fill_dark="linear-gradient(90deg, *primary_500, *primary_600)", | |
| button_secondary_background_fill_hover_dark="linear-gradient(90deg, *primary_500, *primary_500)", | |
| slider_color="*secondary_500", | |
| slider_color_dark="*secondary_600", | |
| block_title_text_weight="600", | |
| block_border_width="3px", | |
| block_shadow="*shadow_drop_lg", | |
| button_primary_shadow="*shadow_drop_lg", | |
| button_large_padding="11px", | |
| color_accent_soft="*primary_100", | |
| block_label_background_fill="*primary_200", | |
| ) | |
| steel_blue_theme = SteelBlueTheme() | |
| css = """ | |
| #main-title h1 { | |
| font-size: 2.3em !important; | |
| } | |
| #output-title h2 { | |
| font-size: 2.1em !important; | |
| } | |
| """ | |
| MAX_MAX_NEW_TOKENS = 4096 | |
| DEFAULT_MAX_NEW_TOKENS = 1024 | |
| MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096")) | |
| device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") | |
| print("CUDA_VISIBLE_DEVICES=", os.environ.get("CUDA_VISIBLE_DEVICES")) | |
| print("torch.__version__ =", torch.__version__) | |
| print("torch.version.cuda =", torch.version.cuda) | |
| print("cuda available:", torch.cuda.is_available()) | |
| print("cuda device count:", torch.cuda.device_count()) | |
| if torch.cuda.is_available(): | |
| print("current device:", torch.cuda.current_device()) | |
| print("device name:", torch.cuda.get_device_name(torch.cuda.current_device())) | |
| print("Using device:", device) | |
| # CACHE_PATH = "./model_cache" | |
| # if not os.path.exists(CACHE_PATH): | |
| # os.makedirs(CACHE_PATH) | |
| # | |
| # model_path_d_local = snapshot_download( | |
| # repo_id='rednote-hilab/dots.ocr', | |
| # local_dir=os.path.join(CACHE_PATH, 'dots.ocr'), | |
| # max_workers=20, | |
| # local_dir_use_symlinks=False | |
| # ) | |
| # | |
| # config_file_path = os.path.join(model_path_d_local, "configuration_dots.py") | |
| # | |
| # if os.path.exists(config_file_path): | |
| # with open(config_file_path, 'r') as f: | |
| # input_code = f.read() | |
| # | |
| # lines = input_code.splitlines() | |
| # if "class DotsVLProcessor" in input_code and not any("attributes = " in line for line in lines): | |
| # output_lines = [] | |
| # for line in lines: | |
| # output_lines.append(line) | |
| # if line.strip().startswith("class DotsVLProcessor"): | |
| # output_lines.append(" attributes = [\"image_processor\", \"tokenizer\"]") | |
| # | |
| # with open(config_file_path, 'w') as f: | |
| # f.write('\n'.join(output_lines)) | |
| # print("Patched configuration_dots.py successfully.") | |
| # | |
| #sys.path.append(model_path_d_local) | |
| MAX_MAX_NEW_TOKENS = 4096 | |
| DEFAULT_MAX_NEW_TOKENS = 2048 | |
| MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096")) | |
| device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") | |
| # Load Chandra-OCR | |
| MODEL_ID_V = "datalab-to/chandra" | |
| processor_v = AutoProcessor.from_pretrained(MODEL_ID_V, trust_remote_code=True) | |
| model_v = Qwen3VLForConditionalGeneration.from_pretrained( | |
| MODEL_ID_V, | |
| trust_remote_code=True, | |
| torch_dtype=torch.float16 | |
| ).to(device).eval() | |
| # Load Nanonets-OCR2-3B | |
| MODEL_ID_X = "nanonets/Nanonets-OCR2-3B" | |
| processor_x = AutoProcessor.from_pretrained(MODEL_ID_X, trust_remote_code=True) | |
| model_x = Qwen2_5_VLForConditionalGeneration.from_pretrained( | |
| MODEL_ID_X, | |
| trust_remote_code=True, | |
| torch_dtype=torch.bfloat16, | |
| ).to(device).eval() | |
| # Load Dots.OCR from the local, patched directory | |
| MODEL_PATH_D = "prithivMLmods/Dots.OCR-Latest-BF16" | |
| processor_d = AutoProcessor.from_pretrained(MODEL_PATH_D, trust_remote_code=True) | |
| model_d = AutoModelForCausalLM.from_pretrained( | |
| MODEL_PATH_D, | |
| attn_implementation="flash_attention_2", | |
| torch_dtype=torch.bfloat16, | |
| device_map="auto", | |
| trust_remote_code=True | |
| ).eval() | |
| # Load olmOCR-2-7B-1025 | |
| MODEL_ID_M = "allenai/olmOCR-2-7B-1025" | |
| processor_m = AutoProcessor.from_pretrained(MODEL_ID_M, trust_remote_code=True) | |
| model_m = Qwen2_5_VLForConditionalGeneration.from_pretrained( | |
| MODEL_ID_M, | |
| trust_remote_code=True, | |
| torch_dtype=torch.float16 | |
| ).to(device).eval() | |
| def generate_image(model_name: str, text: str, image: Image.Image, | |
| max_new_tokens: int, temperature: float, top_p: float, | |
| top_k: int, repetition_penalty: float): | |
| """ | |
| Generates responses using the selected model for image input. | |
| Yields raw text and Markdown-formatted text. | |
| """ | |
| if model_name == "olmOCR-2-7B-1025": | |
| processor = processor_m | |
| model = model_m | |
| elif model_name == "Nanonets-OCR2-3B": | |
| processor = processor_x | |
| model = model_x | |
| elif model_name == "Chandra-OCR": | |
| processor = processor_v | |
| model = model_v | |
| elif model_name == "Dots.OCR": | |
| processor = processor_d | |
| model = model_d | |
| else: | |
| yield "Invalid model selected.", "Invalid model selected." | |
| return | |
| if image is None: | |
| yield "Please upload an image.", "Please upload an image." | |
| return | |
| messages = [{ | |
| "role": "user", | |
| "content": [ | |
| {"type": "image"}, | |
| {"type": "text", "text": text}, | |
| ] | |
| }] | |
| prompt_full = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) | |
| inputs = processor( | |
| text=[prompt_full], | |
| images=[image], | |
| return_tensors="pt", | |
| padding=True).to(device) | |
| streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True) | |
| generation_kwargs = { | |
| **inputs, | |
| "streamer": streamer, | |
| "max_new_tokens": max_new_tokens, | |
| "do_sample": True, | |
| "temperature": temperature, | |
| "top_p": top_p, | |
| "top_k": top_k, | |
| "repetition_penalty": repetition_penalty, | |
| } | |
| thread = Thread(target=model.generate, kwargs=generation_kwargs) | |
| thread.start() | |
| buffer = "" | |
| for new_text in streamer: | |
| buffer += new_text | |
| buffer = buffer.replace("<|im_end|>", "") | |
| time.sleep(0.01) | |
| yield buffer, buffer | |
| image_examples = [ | |
| ["OCR the content perfectly.", "examples/3.jpg"], | |
| ["Perform OCR on the image.", "examples/1.jpg"], | |
| ["Extract the contents. [page].", "examples/2.jpg"], | |
| ] | |
| with gr.Blocks(css=css, theme=steel_blue_theme) as demo: | |
| gr.Markdown("# **Multimodal OCR3**", elem_id="main-title") | |
| with gr.Row(): | |
| with gr.Column(scale=2): | |
| image_query = gr.Textbox(label="Query Input", placeholder="Enter your query here...") | |
| image_upload = gr.Image(type="pil", label="Upload Image", height=290) | |
| image_submit = gr.Button("Submit", variant="primary") | |
| gr.Examples( | |
| examples=image_examples, | |
| inputs=[image_query, image_upload] | |
| ) | |
| with gr.Accordion("Advanced options", open=False): | |
| max_new_tokens = gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS) | |
| temperature = gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.7) | |
| top_p = gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9) | |
| top_k = gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50) | |
| repetition_penalty = gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.1) | |
| with gr.Column(scale=3): | |
| gr.Markdown("## Output", elem_id="output-title") | |
| output = gr.Textbox(label="Raw Output Stream", interactive=False, lines=11, show_copy_button=True) | |
| with gr.Accordion("(Result.md)", open=False): | |
| markdown_output = gr.Markdown(label="(Result.Md)") | |
| model_choice = gr.Radio( | |
| choices=["Nanonets-OCR2-3B", "Chandra-OCR", "Dots.OCR", "olmOCR-2-7B-1025"], | |
| label="Select Model", | |
| value="Nanonets-OCR2-3B" | |
| ) | |
| image_submit.click( | |
| fn=generate_image, | |
| inputs=[model_choice, image_query, image_upload, max_new_tokens, temperature, top_p, top_k, repetition_penalty], | |
| outputs=[output, markdown_output] | |
| ) | |
| if __name__ == "__main__": | |
| demo.queue(max_size=50).launch(mcp_server=True, ssr_mode=False, show_error=True) |