Spaces:
Running
on
Zero
Running
on
Zero
import os | |
import random | |
import uuid | |
import json | |
import requests | |
import time | |
import asyncio | |
from threading import Thread | |
from typing import Iterable | |
import gradio as gr | |
import spaces | |
import torch | |
import numpy as np | |
from PIL import Image | |
import cv2 | |
from transformers import ( | |
Qwen2_5_VLForConditionalGeneration, | |
Qwen2VLForConditionalGeneration, | |
AutoProcessor, | |
AutoTokenizer, | |
TextIteratorStreamer, | |
) | |
from gradio.themes import Soft | |
from gradio.themes.utils import colors, fonts, sizes | |
# --- Theme and CSS Definition --- | |
colors.steel_blue = colors.Color( | |
name="steel_blue", | |
c50="#EBF3F8", | |
c100="#D3E5F0", | |
c200="#A8CCE1", | |
c300="#7DB3D2", | |
c400="#529AC3", | |
c500="#4682B4", # SteelBlue base color | |
c600="#3E72A0", | |
c700="#36638C", | |
c800="#2E5378", | |
c900="#264364", | |
c950="#1E3450", | |
) | |
class SteelBlueTheme(Soft): | |
def __init__( | |
self, | |
*, | |
primary_hue: colors.Color | str = colors.gray, | |
secondary_hue: colors.Color | str = colors.steel_blue, | |
neutral_hue: colors.Color | str = colors.slate, | |
text_size: sizes.Size | str = sizes.text_lg, | |
font: fonts.Font | str | Iterable[fonts.Font | str] = ( | |
fonts.GoogleFont("Outfit"), "Arial", "sans-serif", | |
), | |
font_mono: fonts.Font | str | Iterable[fonts.Font | str] = ( | |
fonts.GoogleFont("IBM Plex Mono"), "ui-monospace", "monospace", | |
), | |
): | |
super().__init__( | |
primary_hue=primary_hue, | |
secondary_hue=secondary_hue, | |
neutral_hue=neutral_hue, | |
text_size=text_size, | |
font=font, | |
font_mono=font_mono, | |
) | |
super().set( | |
background_fill_primary="*primary_50", | |
background_fill_primary_dark="*primary_900", | |
body_background_fill="linear-gradient(135deg, *primary_200, *primary_100)", | |
body_background_fill_dark="linear-gradient(135deg, *primary_900, *primary_800)", | |
button_primary_text_color="white", | |
button_primary_text_color_hover="white", | |
button_primary_background_fill="linear-gradient(90deg, *secondary_500, *secondary_600)", | |
button_primary_background_fill_hover="linear-gradient(90deg, *secondary_600, *secondary_700)", | |
button_primary_background_fill_dark="linear-gradient(90deg, *secondary_600, *secondary_800)", | |
button_primary_background_fill_hover_dark="linear-gradient(90deg, *secondary_500, *secondary_500)", | |
slider_color="*secondary_500", | |
slider_color_dark="*secondary_600", | |
block_title_text_weight="600", | |
block_border_width="3px", | |
block_shadow="*shadow_drop_lg", | |
button_primary_shadow="*shadow_drop_lg", | |
button_large_padding="11px", | |
color_accent_soft="*primary_100", | |
block_label_background_fill="*primary_200", | |
) | |
steel_blue_theme = SteelBlueTheme() | |
# Constants for text generation | |
MAX_MAX_NEW_TOKENS = 4096 | |
DEFAULT_MAX_NEW_TOKENS = 1024 | |
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096")) | |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") | |
# Load DeepCaption-VLA-7B | |
MODEL_ID_N = "prithivMLmods/DeepCaption-VLA-7B" | |
processor_n = AutoProcessor.from_pretrained(MODEL_ID_N, trust_remote_code=True) | |
model_n = Qwen2_5_VLForConditionalGeneration.from_pretrained( | |
MODEL_ID_N, | |
trust_remote_code=True, | |
torch_dtype=torch.float16 | |
).to(device).eval() | |
# Load SkyCaptioner-V1 | |
MODEL_ID_M = "Skywork/SkyCaptioner-V1" | |
processor_m = AutoProcessor.from_pretrained(MODEL_ID_M, trust_remote_code=True) | |
model_m = Qwen2_5_VLForConditionalGeneration.from_pretrained( | |
MODEL_ID_M, | |
trust_remote_code=True, | |
torch_dtype=torch.float16 | |
).to(device).eval() | |
# Load Space Thinker | |
MODEL_ID_Z = "remyxai/SpaceThinker-Qwen2.5VL-3B" | |
processor_z = AutoProcessor.from_pretrained(MODEL_ID_Z, trust_remote_code=True) | |
model_z = Qwen2_5_VLForConditionalGeneration.from_pretrained( | |
MODEL_ID_Z, | |
trust_remote_code=True, | |
torch_dtype=torch.float16 | |
).to(device).eval() | |
# Load coreOCR-7B-050325-preview | |
MODEL_ID_K = "prithivMLmods/coreOCR-7B-050325-preview" | |
processor_k = AutoProcessor.from_pretrained(MODEL_ID_K, trust_remote_code=True) | |
model_k = Qwen2VLForConditionalGeneration.from_pretrained( | |
MODEL_ID_K, | |
trust_remote_code=True, | |
torch_dtype=torch.float16 | |
).to(device).eval() | |
# Load remyxai/SpaceOm | |
MODEL_ID_Y = "remyxai/SpaceOm" | |
processor_y = AutoProcessor.from_pretrained(MODEL_ID_Y, trust_remote_code=True) | |
model_y = Qwen2_5_VLForConditionalGeneration.from_pretrained( | |
MODEL_ID_Y, | |
trust_remote_code=True, | |
torch_dtype=torch.float16 | |
).to(device).eval() | |
# Video sampling | |
def downsample_video(video_path): | |
""" | |
Downsamples the video to evenly spaced frames. | |
Each frame is returned as a PIL image along with its timestamp. | |
""" | |
vidcap = cv2.VideoCapture(video_path) | |
total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT)) | |
fps = vidcap.get(cv2.CAP_PROP_FPS) | |
frames = [] | |
frame_indices = np.linspace(0, total_frames - 1, min(total_frames, 10), dtype=int) | |
for i in frame_indices: | |
vidcap.set(cv2.CAP_PROP_POS_FRAMES, i) | |
success, image = vidcap.read() | |
if success: | |
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) | |
pil_image = Image.fromarray(image) | |
timestamp = round(i / fps, 2) | |
frames.append((pil_image, timestamp)) | |
vidcap.release() | |
return frames | |
def generate_image(model_name: str, text: str, image: Image.Image, | |
max_new_tokens: int = 1024, | |
temperature: float = 0.6, | |
top_p: float = 0.9, | |
top_k: int = 50, | |
repetition_penalty: float = 1.2): | |
""" | |
Generates responses using the selected model for image input. | |
Yields raw text and Markdown-formatted text. | |
""" | |
if model_name == "SkyCaptioner-V1": | |
processor, model = processor_m, model_m | |
elif model_name == "DeepCaption-VLA-7B": | |
processor, model = processor_n, model_n | |
elif model_name == "SpaceThinker-3B": | |
processor, model = processor_z, model_z | |
elif model_name == "coreOCR-7B-050325-preview": | |
processor, model = processor_k, model_k | |
elif model_name == "SpaceOm-3B": | |
processor, model = processor_y, model_y | |
else: | |
yield "Invalid model selected.", "Invalid model selected." | |
return | |
if image is None: | |
yield "Please upload an image.", "Please upload an image." | |
return | |
messages = [{ | |
"role": "user", | |
"content": [ | |
{"type": "image"}, | |
{"type": "text", "text": text}, | |
] | |
}] | |
prompt_full = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) | |
inputs = processor( | |
text=[prompt_full], | |
images=[image], | |
return_tensors="pt", | |
padding=True, | |
truncation=True, | |
max_length=MAX_INPUT_TOKEN_LENGTH | |
).to(device) | |
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True) | |
generation_kwargs = {**inputs, "streamer": streamer, "max_new_tokens": max_new_tokens} | |
thread = Thread(target=model.generate, kwargs=generation_kwargs) | |
thread.start() | |
buffer = "" | |
for new_text in streamer: | |
buffer += new_text | |
buffer = buffer.replace("<|im_end|>", "") | |
time.sleep(0.01) | |
yield buffer, buffer | |
def generate_video(model_name: str, text: str, video_path: str, | |
max_new_tokens: int = 1024, | |
temperature: float = 0.6, | |
top_p: float = 0.9, | |
top_k: int = 50, | |
repetition_penalty: float = 1.2): | |
""" | |
Generates responses using the selected model for video input. | |
Yields raw text and Markdown-formatted text. | |
""" | |
if model_name == "SkyCaptioner-V1": | |
processor, model = processor_m, model_m | |
elif model_name == "DeepCaption-VLA-7B": | |
processor, model = processor_n, model_n | |
elif model_name == "SpaceThinker-3B": | |
processor, model = processor_z, model_z | |
elif model_name == "coreOCR-7B-050325-preview": | |
processor, model = processor_k, model_k | |
elif model_name == "SpaceOm-3B": | |
processor, model = processor_y, model_y | |
else: | |
yield "Invalid model selected.", "Invalid model selected." | |
return | |
if video_path is None: | |
yield "Please upload a video.", "Please upload a video." | |
return | |
frames = downsample_video(video_path) | |
messages = [ | |
{"role": "system", "content": [{"type": "text", "text": "You are a helpful assistant."}]}, | |
{"role": "user", "content": [{"type": "text", "text": text}]} | |
] | |
for frame in frames: | |
image, timestamp = frame | |
messages[1]["content"].append({"type": "text", "text": f"Frame {timestamp}:"}) | |
messages[1]["content"].append({"type": "image", "image": image}) | |
inputs = processor.apply_chat_template( | |
messages, | |
tokenize=True, | |
add_generation_prompt=True, | |
return_dict=True, | |
return_tensors="pt", | |
truncation=True, | |
max_length=MAX_INPUT_TOKEN_LENGTH | |
).to(device) | |
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True) | |
generation_kwargs = { | |
**inputs, | |
"streamer": streamer, | |
"max_new_tokens": max_new_tokens, | |
"do_sample": True, | |
"temperature": temperature, | |
"top_p": top_p, | |
"top_k": top_k, | |
"repetition_penalty": repetition_penalty, | |
} | |
thread = Thread(target=model.generate, kwargs=generation_kwargs) | |
thread.start() | |
buffer = "" | |
for new_text in streamer: | |
buffer += new_text | |
buffer = buffer.replace("<|im_end|>", "") | |
time.sleep(0.01) | |
yield buffer, buffer | |
# Define examples for image and video inference | |
image_examples = [ | |
["type out the messy hand-writing as accurately as you can.", "images/1.jpg"], | |
["count the number of birds and explain the scene in detail.", "images/2.jpeg"], | |
["how far is the Goal from the penalty taker in this image?.", "images/3.png"], | |
["approximately how many meters apart are the chair and bookshelf?.", "images/4.png"], | |
["how far is the man in the red hat from the pallet of boxes in feet?.", "images/5.jpg"], | |
] | |
video_examples = [ | |
["give the highlights of the movie scene video.", "videos/1.mp4"], | |
["explain the advertisement in detail.", "videos/2.mp4"] | |
] | |
css = """ | |
#main-title h1 { | |
font-size: 2.3em !important; | |
} | |
#output-title h2 { | |
font-size: 2.1em !important; | |
} | |
""" | |
# Create the Gradio Interface | |
with gr.Blocks(css=css, theme=steel_blue_theme) as demo: | |
gr.Markdown("# **VisionScope R2**", elem_id="main-title") | |
with gr.Row(): | |
with gr.Column(scale=2): | |
with gr.Tabs(): | |
with gr.TabItem("Image Inference"): | |
image_query = gr.Textbox(label="Query Input", placeholder="Enter your query here...") | |
image_upload = gr.Image(type="pil", label="Upload Image", height=290) | |
image_submit = gr.Button("Submit", variant="primary") | |
gr.Examples(examples=image_examples, inputs=[image_query, image_upload]) | |
with gr.TabItem("Video Inference"): | |
video_query = gr.Textbox(label="Query Input", placeholder="Enter your query here...") | |
video_upload = gr.Video(label="Upload Video(<= 30s)", height=290) | |
video_submit = gr.Button("Submit", variant="primary") | |
gr.Examples(examples=video_examples, inputs=[video_query, video_upload]) | |
with gr.Accordion("Advanced options", open=False): | |
max_new_tokens = gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS) | |
temperature = gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6) | |
top_p = gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9) | |
top_k = gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50) | |
repetition_penalty = gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2) | |
with gr.Column(scale=3): | |
gr.Markdown("## Output", elem_id="output-title") | |
output = gr.Textbox(label="Raw Output Stream", interactive=False, lines=11, show_copy_button=True) | |
with gr.Accordion("(Result.md)", open=False): | |
markdown_output = gr.Markdown(label="Formatted Result") | |
model_choice = gr.Radio( | |
choices=["DeepCaption-VLA-7B", "SkyCaptioner-V1", "SpaceThinker-3B", "coreOCR-7B-050325-preview", "SpaceOm-3B"], | |
label="Select Model", | |
value="DeepCaption-VLA-7B" | |
) | |
image_submit.click( | |
fn=generate_image, | |
inputs=[model_choice, image_query, image_upload, max_new_tokens, temperature, top_p, top_k, repetition_penalty], | |
outputs=[output, markdown_output] | |
) | |
video_submit.click( | |
fn=generate_video, | |
inputs=[model_choice, video_query, video_upload, max_new_tokens, temperature, top_p, top_k, repetition_penalty], | |
outputs=[output, markdown_output] | |
) | |
if __name__ == "__main__": | |
demo.queue(max_size=50).launch(mcp_server=True, ssr_mode=False, show_error=True) |