pritamdeka
commited on
Commit
·
469e2ef
1
Parent(s):
6f86b56
Update app.py
Browse files
app.py
CHANGED
@@ -113,10 +113,10 @@ def keyphrase_generator(article_link, model_1, model_2, max_num_keywords):
|
|
113 |
return keywords
|
114 |
|
115 |
igen=gr.Interface(keyphrase_generator,
|
116 |
-
inputs=[gr.inputs.Textbox(lines=3, placeholder="Provide article link here",
|
117 |
outputs="text", theme="huggingface",
|
118 |
-
title="
|
119 |
-
description="Generates the keyphrases from an article which best describes the article.",
|
120 |
article= "The work is based on a part of the paper <a href=https://dl.acm.org/doi/10.1145/3487664.3487701>Unsupervised Keyword Combination Query Generation from Online Health Related Content for Evidence-Based Fact Checking</a>."
|
121 |
"\t It uses the TextRank algorithm with SBERT to first find the top sentences and then extracts the keyphrases from those sentences using scispaCy and SBERT."
|
122 |
"\t The list of SBERT models required in the textboxes can be found in <a href=www.sbert.net/docs/pretrained_models.html>SBERT Pre-trained models hub</a>."
|
|
|
113 |
return keywords
|
114 |
|
115 |
igen=gr.Interface(keyphrase_generator,
|
116 |
+
inputs=[gr.inputs.Textbox(lines=3, placeholder="Provide article link here", label="Article link"),gr.inputs.Textbox(lines=1, placeholder="SBERT model",default="all-mpnet-base-v2", label="SBERT model for TextRank (e.g. all-mpnet-base-v2)"),gr.inputs.Textbox(lines=1, placeholder="SBERT model",default="all-distilroberta-v1",label="SBERT model for Keyphrases (e.g. all-distilroberta-v1)"),gr.inputs.Slider(minimum=5, maximum=30, step=1, default=10, label="Max number of keyphrases to show")],
|
117 |
outputs="text", theme="huggingface",
|
118 |
+
title="Health Article Keyphrase Generator",
|
119 |
+
description="Generates the keyphrases from an online health article which best describes the article.",
|
120 |
article= "The work is based on a part of the paper <a href=https://dl.acm.org/doi/10.1145/3487664.3487701>Unsupervised Keyword Combination Query Generation from Online Health Related Content for Evidence-Based Fact Checking</a>."
|
121 |
"\t It uses the TextRank algorithm with SBERT to first find the top sentences and then extracts the keyphrases from those sentences using scispaCy and SBERT."
|
122 |
"\t The list of SBERT models required in the textboxes can be found in <a href=www.sbert.net/docs/pretrained_models.html>SBERT Pre-trained models hub</a>."
|