|
import pickle |
|
import streamlit as st |
|
import pandas as pd |
|
import numpy as np |
|
|
|
st.title("Hello streamlit") |
|
|
|
def predict(names): |
|
|
|
model = pickle.load(open( |
|
"model.pkl", "rb")) |
|
|
|
|
|
|
|
result = model.predict([names]) |
|
|
|
return result[0] |
|
|
|
|
|
|
|
|
|
def main(): |
|
CRIM = st.number_input("CRIM") |
|
|
|
ZN = st.number_input("proportion of residential land zoned") |
|
|
|
INDUS = st.number_input("proportion of non-retail business acres per town") |
|
|
|
CHAS = st.number_input( |
|
"Charles River dummy variable (= 1 if tract bounds river; 0 otherwise)") |
|
|
|
NOX = st.number_input("nitric oxides concentration") |
|
|
|
RM = st.number_input("average number of rooms per dwelling") |
|
|
|
AGE = st.number_input( |
|
"proportion of owner-occupied units built prior to 1940") |
|
|
|
DIS = st.number_input( |
|
"weighted distances to five Boston employment centers") |
|
|
|
RAD = st.number_input("index of accessibility to radial highways") |
|
|
|
TAX = st.number_input("full-value property-tax rate per $10,000") |
|
|
|
PTRATIO = st.number_input("pupil-teacher ratio by town") |
|
|
|
B = st.number_input("B") |
|
|
|
LSTAT = st.number_input("LSTAT") |
|
|
|
names = [CRIM, ZN, INDUS, CHAS, NOX, RM, AGE, DIS, RAD, TAX, PTRATIO, B, LSTAT] |
|
|
|
if st.button("prediction"): |
|
|
|
|
|
ans = predict(names) |
|
st.success(f"your home price could be - {ans}") |
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
main() |