Guardian-AI / app.py
princemaxp's picture
Update app.py
2a46434 verified
raw
history blame
2.46 kB
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
from datasets import load_dataset, Dataset
from huggingface_hub import login
import os
# --- Hugging Face Dataset Setup ---
HF_TOKEN = os.environ.get("dataset_HF_TOKEN") # Secret in your HF Space
login(token=HF_TOKEN)
dataset_name = "YOUR_USERNAME/guardian-ai-qna" # Replace YOUR_USERNAME
try:
dataset = load_dataset(dataset_name)
except:
# If dataset is empty or not yet created, create an empty one
dataset = Dataset.from_dict({"question": [], "answer": []})
# --- Load model & tokenizer ---
model_id = "google/gemma-2b-it"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id)
generator = pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
device=-1 # CPU, change to 0 if GPU available
)
# --- System instruction ---
SYSTEM_PROMPT = """You are Guardian AI, a friendly cybersecurity educator.
Your goal is to explain cybersecurity concepts in simple, engaging language with examples.
Always keep answers clear, short, and focused on security awareness.
"""
# --- Save Q&A to dataset ---
def save_qna(question, answer):
global dataset
new_entry = Dataset.from_dict({"question": [question], "answer": [answer]})
dataset = dataset.concat(new_entry)
dataset.push_to_hub(dataset_name, private=False) # push updates
# --- Chat function ---
def chat(history, user_input):
prompt = SYSTEM_PROMPT + "\nUser: " + user_input + "\nGuardian AI:"
result = generator(
prompt,
max_new_tokens=200,
do_sample=True,
temperature=0.7,
top_p=0.9
)[0]['generated_text']
response = result.split("Guardian AI:")[-1].strip()
history.append((user_input, response))
# Save to dataset
save_qna(user_input, response)
return history, history
# --- Gradio UI ---
with gr.Blocks() as demo:
gr.Markdown("## 🛡️ Guardian AI – Cybersecurity Educator")
chatbot = gr.Chatbot()
state = gr.State([])
with gr.Row():
with gr.Column(scale=8):
user_input = gr.Textbox(show_label=False, placeholder="Ask me about cybersecurity...")
with gr.Column(scale=2):
send_btn = gr.Button("Send")
send_btn.click(chat, [state, user_input], [chatbot, state])
user_input.submit(chat, [state, user_input], [chatbot, state])
demo.launch()