Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -38,7 +38,7 @@ from compel import Compel, ReturnedEmbeddingsType
|
|
| 38 |
|
| 39 |
from gradio_imageslider import ImageSlider
|
| 40 |
|
| 41 |
-
# Load LoRA configurations
|
| 42 |
with open("sdxl_loras.json", "r") as file:
|
| 43 |
data = json.load(file)
|
| 44 |
sdxl_loras_raw = [
|
|
@@ -61,8 +61,9 @@ with open("sdxl_loras.json", "r") as file:
|
|
| 61 |
|
| 62 |
with open("defaults_data.json", "r") as file:
|
| 63 |
lora_defaults = json.load(file)
|
|
|
|
| 64 |
|
| 65 |
-
device = "cuda"
|
| 66 |
|
| 67 |
# Cache for LoRA state dicts
|
| 68 |
state_dicts = {}
|
|
@@ -80,7 +81,7 @@ for item in sdxl_loras_raw:
|
|
| 80 |
}
|
| 81 |
|
| 82 |
sdxl_loras_raw = [item for item in sdxl_loras_raw if item.get("new") != True]
|
| 83 |
-
|
| 84 |
# Download models
|
| 85 |
hf_hub_download(
|
| 86 |
repo_id="InstantX/InstantID",
|
|
@@ -111,6 +112,7 @@ app.prepare(ctx_id=0, det_size=(768, 768))
|
|
| 111 |
face_adapter = f'/data/checkpoints/ip-adapter.bin'
|
| 112 |
controlnet_path = f'/data/checkpoints/ControlNetModel'
|
| 113 |
|
|
|
|
| 114 |
st = time.time()
|
| 115 |
identitynet = ControlNetModel.from_pretrained(controlnet_path, torch_dtype=torch.float16)
|
| 116 |
zoedepthnet = ControlNetModel.from_pretrained("diffusers/controlnet-zoe-depth-sdxl-1.0", torch_dtype=torch.float16)
|
|
@@ -123,9 +125,8 @@ et = time.time()
|
|
| 123 |
print('Loading VAE took: ', et - st, 'seconds')
|
| 124 |
|
| 125 |
st = time.time()
|
| 126 |
-
# CHANGED: Using AlbedoBase XL v2.1 for better quality
|
| 127 |
pipe = StableDiffusionXLInstantIDImg2ImgPipeline.from_pretrained(
|
| 128 |
-
"
|
| 129 |
vae=vae,
|
| 130 |
controlnet=[identitynet, zoedepthnet],
|
| 131 |
torch_dtype=torch.float16
|
|
@@ -133,8 +134,7 @@ pipe = StableDiffusionXLInstantIDImg2ImgPipeline.from_pretrained(
|
|
| 133 |
|
| 134 |
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config, use_karras_sigmas=True)
|
| 135 |
pipe.load_ip_adapter_instantid(face_adapter)
|
| 136 |
-
|
| 137 |
-
pipe.set_ip_adapter_scale(1.0)
|
| 138 |
et = time.time()
|
| 139 |
print('Loading pipeline took: ', et - st, 'seconds')
|
| 140 |
|
|
@@ -159,123 +159,17 @@ last_lora = ""
|
|
| 159 |
last_fused = False
|
| 160 |
lora_archive = "/data"
|
| 161 |
|
| 162 |
-
# Enhanced face detection with better face quality filtering
|
| 163 |
-
def detect_faces(face_image, use_multiple_faces=False):
|
| 164 |
-
"""
|
| 165 |
-
Detect faces in the image with quality filtering
|
| 166 |
-
Returns: list of face info dictionaries, or empty list if no faces
|
| 167 |
-
"""
|
| 168 |
-
try:
|
| 169 |
-
face_info_list = app.get(cv2.cvtColor(np.array(face_image), cv2.COLOR_RGB2BGR))
|
| 170 |
-
|
| 171 |
-
if not face_info_list or len(face_info_list) == 0:
|
| 172 |
-
print("No faces detected")
|
| 173 |
-
return []
|
| 174 |
-
|
| 175 |
-
# Filter faces by quality score if available
|
| 176 |
-
filtered_faces = []
|
| 177 |
-
for face_info in face_info_list:
|
| 178 |
-
# Check if face has minimum quality
|
| 179 |
-
if 'det_score' in face_info and face_info['det_score'] > 0.5:
|
| 180 |
-
filtered_faces.append(face_info)
|
| 181 |
-
elif 'det_score' not in face_info:
|
| 182 |
-
filtered_faces.append(face_info)
|
| 183 |
-
|
| 184 |
-
if not filtered_faces:
|
| 185 |
-
print("No high-quality faces detected")
|
| 186 |
-
return []
|
| 187 |
-
|
| 188 |
-
# Sort faces by size (largest first)
|
| 189 |
-
filtered_faces = sorted(
|
| 190 |
-
filtered_faces,
|
| 191 |
-
key=lambda x: (x['bbox'][2] - x['bbox'][0]) * (x['bbox'][3] - x['bbox'][1]),
|
| 192 |
-
reverse=True
|
| 193 |
-
)
|
| 194 |
-
|
| 195 |
-
if use_multiple_faces:
|
| 196 |
-
print(f"Detected {len(filtered_faces)} high-quality faces")
|
| 197 |
-
return filtered_faces
|
| 198 |
-
else:
|
| 199 |
-
print(f"Using largest face (detected {len(filtered_faces)} total)")
|
| 200 |
-
return [filtered_faces[0]]
|
| 201 |
-
|
| 202 |
-
except Exception as e:
|
| 203 |
-
print(f"Face detection error: {e}")
|
| 204 |
-
return []
|
| 205 |
-
|
| 206 |
-
def process_face_embeddings_separately(face_info_list):
|
| 207 |
-
"""
|
| 208 |
-
Process face embeddings separately for multi-face generation
|
| 209 |
-
Returns: list of individual face embeddings
|
| 210 |
-
"""
|
| 211 |
-
if not face_info_list:
|
| 212 |
-
return []
|
| 213 |
-
|
| 214 |
-
embeddings = [face_info['embedding'] for face_info in face_info_list]
|
| 215 |
-
return embeddings
|
| 216 |
-
|
| 217 |
-
def create_face_kps_image(face_image, face_info_list):
|
| 218 |
-
"""
|
| 219 |
-
Create keypoints image from face info with enhanced visibility
|
| 220 |
-
"""
|
| 221 |
-
if not face_info_list:
|
| 222 |
-
return face_image
|
| 223 |
-
|
| 224 |
-
# For multiple faces, draw all keypoints with different colors
|
| 225 |
-
if len(face_info_list) > 1:
|
| 226 |
-
return draw_multiple_kps(face_image, [f['kps'] for f in face_info_list])
|
| 227 |
-
else:
|
| 228 |
-
return draw_kps(face_image, face_info_list[0]['kps'])
|
| 229 |
-
|
| 230 |
-
def draw_multiple_kps(image_pil, kps_list, color_list=[(255, 0, 0), (0, 255, 0), (0, 0, 255), (255, 255, 0), (255, 0, 255)]):
|
| 231 |
-
"""
|
| 232 |
-
Draw keypoints for multiple faces with enhanced visibility
|
| 233 |
-
"""
|
| 234 |
-
stickwidth = 4
|
| 235 |
-
limbSeq = np.array([[0, 2], [1, 2], [3, 2], [4, 2]])
|
| 236 |
-
|
| 237 |
-
w, h = image_pil.size
|
| 238 |
-
out_img = np.zeros([h, w, 3])
|
| 239 |
-
|
| 240 |
-
for idx, kps in enumerate(kps_list):
|
| 241 |
-
kps = np.array(kps)
|
| 242 |
-
# Use different colors for different faces
|
| 243 |
-
color_offset = idx % len(color_list)
|
| 244 |
-
|
| 245 |
-
for i in range(len(limbSeq)):
|
| 246 |
-
index = limbSeq[i]
|
| 247 |
-
color = color_list[(index[0] + color_offset) % len(color_list)]
|
| 248 |
-
|
| 249 |
-
x = kps[index][:, 0]
|
| 250 |
-
y = kps[index][:, 1]
|
| 251 |
-
length = ((x[0] - x[1]) ** 2 + (y[0] - y[1]) ** 2) ** 0.5
|
| 252 |
-
angle = np.degrees(np.arctan2(y[0] - y[1], x[0] - x[1]))
|
| 253 |
-
polygon = cv2.ellipse2Poly(
|
| 254 |
-
(int(np.mean(x)), int(np.mean(y))), (int(length / 2), stickwidth), int(angle), 0, 360, 1
|
| 255 |
-
)
|
| 256 |
-
out_img = cv2.fillConvexPoly(out_img.copy(), polygon, color)
|
| 257 |
-
|
| 258 |
-
out_img = (out_img * 0.6).astype(np.uint8)
|
| 259 |
-
|
| 260 |
-
for idx_kp, kp in enumerate(kps):
|
| 261 |
-
color = color_list[(idx_kp + color_offset) % len(color_list)]
|
| 262 |
-
x, y = kp
|
| 263 |
-
out_img = cv2.circle(out_img.copy(), (int(x), int(y)), 10, color, -1)
|
| 264 |
-
|
| 265 |
-
out_img_pil = Image.fromarray(out_img.astype(np.uint8))
|
| 266 |
-
return out_img_pil
|
| 267 |
-
|
| 268 |
def update_selection(selected_state: gr.SelectData, sdxl_loras, face_strength, image_strength, weight, depth_control_scale, negative, is_new=False):
|
| 269 |
lora_repo = sdxl_loras[selected_state.index]["repo"]
|
| 270 |
new_placeholder = "Type a prompt to use your selected LoRA"
|
| 271 |
weight_name = sdxl_loras[selected_state.index]["weights"]
|
| 272 |
-
updated_text = f"### Selected: [{lora_repo}](https://huggingface.co/{lora_repo})
|
| 273 |
|
| 274 |
for lora_list in lora_defaults:
|
| 275 |
if lora_list["model"] == sdxl_loras[selected_state.index]["repo"]:
|
| 276 |
-
face_strength = lora_list.get("face_strength",
|
| 277 |
-
image_strength = lora_list.get("image_strength", 0.
|
| 278 |
-
weight = lora_list.get("weight",
|
| 279 |
depth_control_scale = lora_list.get("depth_control_scale", 0.8)
|
| 280 |
negative = lora_list.get("negative", "")
|
| 281 |
|
|
@@ -318,10 +212,9 @@ def resize_image_aspect_ratio(img, max_dim=1280):
|
|
| 318 |
|
| 319 |
|
| 320 |
def run_lora(face_image, prompt, negative, lora_scale, selected_state, face_strength, image_strength,
|
| 321 |
-
guidance_scale, depth_control_scale, sdxl_loras, custom_lora,
|
| 322 |
-
progress=gr.Progress(track_tqdm=True)):
|
| 323 |
"""
|
| 324 |
-
|
| 325 |
"""
|
| 326 |
print("Custom LoRA:", custom_lora)
|
| 327 |
custom_lora_path = custom_lora[0] if custom_lora else None
|
|
@@ -330,55 +223,41 @@ def run_lora(face_image, prompt, negative, lora_scale, selected_state, face_stre
|
|
| 330 |
st = time.time()
|
| 331 |
face_image = resize_image_aspect_ratio(face_image)
|
| 332 |
|
| 333 |
-
#
|
| 334 |
-
|
| 335 |
-
|
| 336 |
-
|
| 337 |
-
|
| 338 |
-
|
| 339 |
-
|
| 340 |
-
|
| 341 |
-
|
| 342 |
-
|
| 343 |
-
# For multiple faces, we'll generate with the primary face (largest)
|
| 344 |
-
face_emb = face_embeddings[0]
|
| 345 |
-
else:
|
| 346 |
face_emb = None
|
| 347 |
face_kps = face_image
|
| 348 |
-
print("No faces detected - using enhanced landscape/depth mode")
|
| 349 |
|
| 350 |
et = time.time()
|
| 351 |
print('Face processing took:', et - st, 'seconds')
|
| 352 |
|
| 353 |
st = time.time()
|
| 354 |
|
| 355 |
-
#
|
| 356 |
if custom_lora_path and custom_lora[1]:
|
| 357 |
prompt = f"{prompt} {custom_lora[1]}"
|
| 358 |
-
|
| 359 |
-
|
| 360 |
-
|
| 361 |
-
|
| 362 |
-
|
| 363 |
-
|
| 364 |
-
|
| 365 |
-
|
| 366 |
-
|
| 367 |
-
# Add LucasArts trigger word if not present (check for both variations)
|
| 368 |
-
if "lucasarts" not in prompt.lower():
|
| 369 |
-
prompt = f"{prompt}, lucasarts artstyle"
|
| 370 |
-
|
| 371 |
-
print("Constructed prompt:", prompt)
|
| 372 |
if prompt == "":
|
| 373 |
-
prompt = "a
|
| 374 |
-
print(f"
|
| 375 |
|
| 376 |
if negative == "":
|
| 377 |
-
|
| 378 |
-
if not face_detected:
|
| 379 |
-
negative = "worst quality, low quality, blurry, distorted, deformed, ugly, bad anatomy"
|
| 380 |
-
else:
|
| 381 |
-
negative = "worst quality, low quality, blurry, distorted, deformed, ugly, bad anatomy, bad proportions"
|
| 382 |
|
| 383 |
print("Custom Loaded LoRA:", custom_lora_path)
|
| 384 |
|
|
@@ -387,11 +266,12 @@ def run_lora(face_image, prompt, negative, lora_scale, selected_state, face_stre
|
|
| 387 |
elif custom_lora_path:
|
| 388 |
repo_name = custom_lora_path
|
| 389 |
full_path_lora = custom_lora_path
|
| 390 |
-
elif selected_state_index >= 0 and selected_state_index < len(sdxl_loras):
|
| 391 |
-
repo_name = sdxl_loras[selected_state_index]["repo"]
|
| 392 |
-
full_path_lora = state_dicts[repo_name]["saved_name"]
|
| 393 |
else:
|
| 394 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 395 |
|
| 396 |
repo_name = repo_name.rstrip("/").lower()
|
| 397 |
|
|
@@ -400,22 +280,8 @@ def run_lora(face_image, prompt, negative, lora_scale, selected_state, face_stre
|
|
| 400 |
et = time.time()
|
| 401 |
print('Prompt processing took:', et - st, 'seconds')
|
| 402 |
|
| 403 |
-
# IMPROVED: Better parameter adjustment for face/landscape modes
|
| 404 |
-
if not face_detected:
|
| 405 |
-
# Enhanced landscape mode parameters
|
| 406 |
-
face_strength = 0.0
|
| 407 |
-
depth_control_scale = 1.0 # Maximum depth control for landscapes
|
| 408 |
-
image_strength = 0.25 # Higher structure preservation
|
| 409 |
-
print("Adjusted parameters for enhanced landscape mode")
|
| 410 |
-
else:
|
| 411 |
-
# Enhanced face preservation
|
| 412 |
-
face_strength = max(face_strength, 1.0) # Ensure strong face preservation
|
| 413 |
-
depth_control_scale = max(depth_control_scale, 0.8) # Good depth control
|
| 414 |
-
print("Adjusted parameters for enhanced face preservation")
|
| 415 |
-
|
| 416 |
st = time.time()
|
| 417 |
|
| 418 |
-
# Generate single image with best face (or landscape)
|
| 419 |
image = generate_image(
|
| 420 |
prompt, negative, face_emb, face_image, face_kps, image_strength,
|
| 421 |
guidance_scale, face_strength, depth_control_scale, repo_name,
|
|
@@ -427,7 +293,7 @@ def run_lora(face_image, prompt, negative, lora_scale, selected_state, face_stre
|
|
| 427 |
run_lora.zerogpu = True
|
| 428 |
|
| 429 |
|
| 430 |
-
@spaces.GPU(duration=
|
| 431 |
def generate_image(prompt, negative, face_emb, face_image, face_kps, image_strength, guidance_scale,
|
| 432 |
face_strength, depth_control_scale, repo_name, loaded_state_dict, lora_scale,
|
| 433 |
sdxl_loras, selected_state_index, face_detected, st):
|
|
@@ -436,17 +302,9 @@ def generate_image(prompt, negative, face_emb, face_image, face_kps, image_stren
|
|
| 436 |
print("Loaded state dict:", loaded_state_dict)
|
| 437 |
print("Last LoRA:", last_lora, "| Current LoRA:", repo_name)
|
| 438 |
|
| 439 |
-
#
|
| 440 |
-
|
| 441 |
-
|
| 442 |
-
if face_detected:
|
| 443 |
-
# Face mode: use both face keypoints and depth
|
| 444 |
-
control_images = [face_kps, depth_image]
|
| 445 |
-
control_scales = [face_strength, depth_control_scale]
|
| 446 |
-
else:
|
| 447 |
-
# Landscape mode: only depth control with enhanced parameters
|
| 448 |
-
control_images = [depth_image]
|
| 449 |
-
control_scales = [depth_control_scale]
|
| 450 |
|
| 451 |
# Handle custom LoRA from HuggingFace
|
| 452 |
if repo_name.startswith("https://huggingface.co"):
|
|
@@ -463,84 +321,41 @@ def generate_image(prompt, negative, face_emb, face_image, face_kps, image_stren
|
|
| 463 |
else:
|
| 464 |
full_path_lora = loaded_state_dict
|
| 465 |
|
| 466 |
-
#
|
| 467 |
if last_lora != repo_name:
|
| 468 |
if last_fused:
|
| 469 |
pipe.unfuse_lora()
|
| 470 |
pipe.unload_lora_weights()
|
| 471 |
pipe.unload_textual_inversion()
|
| 472 |
|
| 473 |
-
|
| 474 |
-
|
| 475 |
-
|
| 476 |
-
|
| 477 |
-
|
| 478 |
-
|
| 479 |
-
|
| 480 |
-
|
| 481 |
-
|
| 482 |
-
|
| 483 |
-
|
| 484 |
-
|
| 485 |
-
|
| 486 |
-
|
| 487 |
-
pipe.
|
| 488 |
-
|
| 489 |
-
|
| 490 |
-
|
| 491 |
-
|
| 492 |
-
|
| 493 |
-
pipe.
|
| 494 |
-
|
| 495 |
-
|
| 496 |
-
text_encoder=pipe.text_encoder_2,
|
| 497 |
-
tokenizer=pipe.tokenizer_2
|
| 498 |
-
)
|
| 499 |
-
except Exception as e:
|
| 500 |
-
print(f"Error loading LoRA: {e}")
|
| 501 |
-
import traceback
|
| 502 |
-
traceback.print_exc()
|
| 503 |
-
raise gr.Error(f"Failed to load LoRA: {str(e)}")
|
| 504 |
|
| 505 |
print("Processing prompt...")
|
| 506 |
-
|
| 507 |
-
# Truncate prompts if they're too long for the tokenizer
|
| 508 |
-
# CLIP tokenizers have a max length of 77 tokens
|
| 509 |
-
def truncate_prompt(text, max_length=75):
|
| 510 |
-
"""Truncate prompt to fit within token limits, leaving room for special tokens"""
|
| 511 |
-
if not text:
|
| 512 |
-
return text
|
| 513 |
-
try:
|
| 514 |
-
tokens = pipe.tokenizer(text, truncation=False, add_special_tokens=False)['input_ids']
|
| 515 |
-
if len(tokens) > max_length:
|
| 516 |
-
# Tokenize with truncation
|
| 517 |
-
truncated_text = pipe.tokenizer.decode(tokens[:max_length], skip_special_tokens=True)
|
| 518 |
-
print(f"Warning: Prompt truncated from {len(tokens)} to {max_length} tokens")
|
| 519 |
-
print(f" Original: {text}")
|
| 520 |
-
print(f" Truncated: {truncated_text}")
|
| 521 |
-
return truncated_text
|
| 522 |
-
return text
|
| 523 |
-
except Exception as e:
|
| 524 |
-
print(f"Warning: Could not truncate prompt, using as-is: {e}")
|
| 525 |
-
return text
|
| 526 |
-
|
| 527 |
-
prompt = truncate_prompt(prompt)
|
| 528 |
-
negative = truncate_prompt(negative) if negative else ""
|
| 529 |
-
|
| 530 |
-
try:
|
| 531 |
-
prompt_token_count = len(pipe.tokenizer(prompt)['input_ids'])
|
| 532 |
-
negative_token_count = len(pipe.tokenizer(negative)['input_ids']) if negative else 0
|
| 533 |
-
print(f"Prompt token count: {prompt_token_count}/77")
|
| 534 |
-
print(f"Negative prompt token count: {negative_token_count}/77")
|
| 535 |
-
except Exception as e:
|
| 536 |
-
print(f"Could not count tokens: {e}")
|
| 537 |
-
|
| 538 |
conditioning, pooled = compel(prompt)
|
| 539 |
negative_conditioning, negative_pooled = compel(negative) if negative else (None, None)
|
| 540 |
|
| 541 |
-
# IMPROVED: Enhanced generation parameters for better quality
|
| 542 |
-
num_inference_steps = 50 # Increased for better quality
|
| 543 |
-
|
| 544 |
print("Generating image...")
|
| 545 |
image = pipe(
|
| 546 |
prompt_embeds=conditioning,
|
|
@@ -551,9 +366,9 @@ def generate_image(prompt, negative, face_emb, face_image, face_kps, image_stren
|
|
| 551 |
height=face_image.height,
|
| 552 |
image_embeds=face_emb if face_detected else None,
|
| 553 |
image=face_image,
|
| 554 |
-
strength=1-image_strength,
|
| 555 |
control_image=control_images,
|
| 556 |
-
num_inference_steps=
|
| 557 |
guidance_scale=guidance_scale,
|
| 558 |
controlnet_conditioning_scale=control_scales,
|
| 559 |
).images[0]
|
|
@@ -644,7 +459,7 @@ def get_civitai_safetensors(link):
|
|
| 644 |
gr.Warning("We couldn't find a SDXL LoRA on the model you've sent")
|
| 645 |
raise Exception("We couldn't find a SDXL LoRA on the model you've sent")
|
| 646 |
return model_data["name"], f"{lora_archive}/{safetensors_name}", trigger_word, image_url
|
| 647 |
-
|
| 648 |
def check_custom_model(link):
|
| 649 |
if(link.startswith("https://")):
|
| 650 |
if(link.startswith("https://huggingface.co") or link.startswith("https://www.huggingface.co")):
|
|
@@ -686,12 +501,12 @@ with gr.Blocks(css="custom.css") as demo:
|
|
| 686 |
gr_sdxl_loras = gr.State(value=sdxl_loras_raw)
|
| 687 |
title = gr.HTML(
|
| 688 |
"""<h1><img src="https://i.imgur.com/DVoGw04.png">
|
| 689 |
-
<span>LucasArts Style
|
| 690 |
font-size: 13px;
|
| 691 |
display: block;
|
| 692 |
font-weight: normal;
|
| 693 |
opacity: 0.75;
|
| 694 |
-
"
|
| 695 |
elem_id="title",
|
| 696 |
)
|
| 697 |
selected_state = gr.State()
|
|
@@ -700,7 +515,7 @@ with gr.Blocks(css="custom.css") as demo:
|
|
| 700 |
with gr.Row(elem_id="main_app"):
|
| 701 |
with gr.Column(scale=4, elem_id="box_column"):
|
| 702 |
with gr.Group(elem_id="gallery_box"):
|
| 703 |
-
photo = gr.Image(label="Upload a picture
|
| 704 |
selected_loras = gr.Gallery(label="Selected LoRAs", height=80, show_share_button=False, visible=False, elem_id="gallery_selected")
|
| 705 |
gallery = gr.Gallery(
|
| 706 |
label="LucasArts Style",
|
|
@@ -717,7 +532,7 @@ with gr.Blocks(css="custom.css") as demo:
|
|
| 717 |
with gr.Column(scale=5):
|
| 718 |
with gr.Row():
|
| 719 |
prompt = gr.Textbox(label="Prompt", show_label=False, lines=1, max_lines=1,
|
| 720 |
-
info="Describe your subject
|
| 721 |
button = gr.Button("Run", elem_id="run_button")
|
| 722 |
|
| 723 |
result = ImageSlider(
|
|
@@ -730,32 +545,25 @@ with gr.Blocks(css="custom.css") as demo:
|
|
| 730 |
share_button = gr.Button("Share to community", elem_id="share-btn")
|
| 731 |
|
| 732 |
with gr.Accordion("Advanced options", open=False):
|
| 733 |
-
use_multiple_faces = gr.Checkbox(
|
| 734 |
-
label="Process multiple faces separately",
|
| 735 |
-
value=False,
|
| 736 |
-
info="Generate separate outputs for each detected face"
|
| 737 |
-
)
|
| 738 |
negative = gr.Textbox(label="Negative Prompt")
|
| 739 |
-
weight = gr.Slider(0, 10, value=
|
| 740 |
face_strength = gr.Slider(
|
| 741 |
-
0, 2, value=
|
| 742 |
-
info="Higher
|
| 743 |
)
|
| 744 |
image_strength = gr.Slider(
|
| 745 |
-
0, 1, value=0.
|
| 746 |
-
info="
|
| 747 |
)
|
| 748 |
guidance_scale = gr.Slider(
|
| 749 |
-
0, 50, value=
|
| 750 |
-
info="How closely to follow the prompt"
|
| 751 |
)
|
| 752 |
depth_control_scale = gr.Slider(
|
| 753 |
-
0, 1, value=0.8, step=0.01, label="Depth ControlNet strength"
|
| 754 |
-
info="3D structure preservation (auto-maximized for landscapes)"
|
| 755 |
)
|
| 756 |
|
| 757 |
prompt_title = gr.Markdown(
|
| 758 |
-
value="### Click
|
| 759 |
visible=True,
|
| 760 |
elem_id="selected_lora",
|
| 761 |
)
|
|
@@ -786,7 +594,7 @@ with gr.Blocks(css="custom.css") as demo:
|
|
| 786 |
).success(
|
| 787 |
fn=run_lora,
|
| 788 |
inputs=[photo, prompt, negative, weight, selected_state, face_strength, image_strength,
|
| 789 |
-
guidance_scale, depth_control_scale, gr_sdxl_loras, custom_loaded_lora
|
| 790 |
outputs=[result, share_group],
|
| 791 |
)
|
| 792 |
|
|
@@ -797,7 +605,7 @@ with gr.Blocks(css="custom.css") as demo:
|
|
| 797 |
).success(
|
| 798 |
fn=run_lora,
|
| 799 |
inputs=[photo, prompt, negative, weight, selected_state, face_strength, image_strength,
|
| 800 |
-
guidance_scale, depth_control_scale, gr_sdxl_loras, custom_loaded_lora
|
| 801 |
outputs=[result, share_group],
|
| 802 |
)
|
| 803 |
|
|
|
|
| 38 |
|
| 39 |
from gradio_imageslider import ImageSlider
|
| 40 |
|
| 41 |
+
# Load LoRA configurations
|
| 42 |
with open("sdxl_loras.json", "r") as file:
|
| 43 |
data = json.load(file)
|
| 44 |
sdxl_loras_raw = [
|
|
|
|
| 61 |
|
| 62 |
with open("defaults_data.json", "r") as file:
|
| 63 |
lora_defaults = json.load(file)
|
| 64 |
+
|
| 65 |
|
| 66 |
+
device = "cuda"
|
| 67 |
|
| 68 |
# Cache for LoRA state dicts
|
| 69 |
state_dicts = {}
|
|
|
|
| 81 |
}
|
| 82 |
|
| 83 |
sdxl_loras_raw = [item for item in sdxl_loras_raw if item.get("new") != True]
|
| 84 |
+
|
| 85 |
# Download models
|
| 86 |
hf_hub_download(
|
| 87 |
repo_id="InstantX/InstantID",
|
|
|
|
| 112 |
face_adapter = f'/data/checkpoints/ip-adapter.bin'
|
| 113 |
controlnet_path = f'/data/checkpoints/ControlNetModel'
|
| 114 |
|
| 115 |
+
# Load IdentityNet
|
| 116 |
st = time.time()
|
| 117 |
identitynet = ControlNetModel.from_pretrained(controlnet_path, torch_dtype=torch.float16)
|
| 118 |
zoedepthnet = ControlNetModel.from_pretrained("diffusers/controlnet-zoe-depth-sdxl-1.0", torch_dtype=torch.float16)
|
|
|
|
| 125 |
print('Loading VAE took: ', et - st, 'seconds')
|
| 126 |
|
| 127 |
st = time.time()
|
|
|
|
| 128 |
pipe = StableDiffusionXLInstantIDImg2ImgPipeline.from_pretrained(
|
| 129 |
+
"SG161222/RealVisXL_V5.0",
|
| 130 |
vae=vae,
|
| 131 |
controlnet=[identitynet, zoedepthnet],
|
| 132 |
torch_dtype=torch.float16
|
|
|
|
| 134 |
|
| 135 |
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config, use_karras_sigmas=True)
|
| 136 |
pipe.load_ip_adapter_instantid(face_adapter)
|
| 137 |
+
pipe.set_ip_adapter_scale(0.9)
|
|
|
|
| 138 |
et = time.time()
|
| 139 |
print('Loading pipeline took: ', et - st, 'seconds')
|
| 140 |
|
|
|
|
| 159 |
last_fused = False
|
| 160 |
lora_archive = "/data"
|
| 161 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 162 |
def update_selection(selected_state: gr.SelectData, sdxl_loras, face_strength, image_strength, weight, depth_control_scale, negative, is_new=False):
|
| 163 |
lora_repo = sdxl_loras[selected_state.index]["repo"]
|
| 164 |
new_placeholder = "Type a prompt to use your selected LoRA"
|
| 165 |
weight_name = sdxl_loras[selected_state.index]["weights"]
|
| 166 |
+
updated_text = f"### Selected: [{lora_repo}](https://huggingface.co/{lora_repo}) ✨ {'(non-commercial LoRA, `cc-by-nc`)' if sdxl_loras[selected_state.index]['is_nc'] else '' }"
|
| 167 |
|
| 168 |
for lora_list in lora_defaults:
|
| 169 |
if lora_list["model"] == sdxl_loras[selected_state.index]["repo"]:
|
| 170 |
+
face_strength = lora_list.get("face_strength", 0.9)
|
| 171 |
+
image_strength = lora_list.get("image_strength", 0.2)
|
| 172 |
+
weight = lora_list.get("weight", 0.95)
|
| 173 |
depth_control_scale = lora_list.get("depth_control_scale", 0.8)
|
| 174 |
negative = lora_list.get("negative", "")
|
| 175 |
|
|
|
|
| 212 |
|
| 213 |
|
| 214 |
def run_lora(face_image, prompt, negative, lora_scale, selected_state, face_strength, image_strength,
|
| 215 |
+
guidance_scale, depth_control_scale, sdxl_loras, custom_lora, progress=gr.Progress(track_tqdm=True)):
|
|
|
|
| 216 |
"""
|
| 217 |
+
Working version - matches old code exactly
|
| 218 |
"""
|
| 219 |
print("Custom LoRA:", custom_lora)
|
| 220 |
custom_lora_path = custom_lora[0] if custom_lora else None
|
|
|
|
| 223 |
st = time.time()
|
| 224 |
face_image = resize_image_aspect_ratio(face_image)
|
| 225 |
|
| 226 |
+
# Simple working face detection
|
| 227 |
+
face_detected = True
|
| 228 |
+
try:
|
| 229 |
+
face_info = app.get(cv2.cvtColor(np.array(face_image), cv2.COLOR_RGB2BGR))
|
| 230 |
+
face_info = sorted(face_info, key=lambda x: (x['bbox'][2]-x['bbox'][0]) * (x['bbox'][3]-x['bbox'][1]))[-1]
|
| 231 |
+
face_emb = face_info['embedding']
|
| 232 |
+
face_kps = draw_kps(face_image, face_info['kps'])
|
| 233 |
+
except:
|
| 234 |
+
face_detected = False
|
|
|
|
|
|
|
|
|
|
|
|
|
| 235 |
face_emb = None
|
| 236 |
face_kps = face_image
|
|
|
|
| 237 |
|
| 238 |
et = time.time()
|
| 239 |
print('Face processing took:', et - st, 'seconds')
|
| 240 |
|
| 241 |
st = time.time()
|
| 242 |
|
| 243 |
+
# Prompt processing
|
| 244 |
if custom_lora_path and custom_lora[1]:
|
| 245 |
prompt = f"{prompt} {custom_lora[1]}"
|
| 246 |
+
else:
|
| 247 |
+
if selected_state_index >= 0 and selected_state_index < len(sdxl_loras):
|
| 248 |
+
for lora_list in lora_defaults:
|
| 249 |
+
if lora_list["model"] == sdxl_loras[selected_state_index]["repo"]:
|
| 250 |
+
prompt_full = lora_list.get("prompt", None)
|
| 251 |
+
if prompt_full:
|
| 252 |
+
prompt = prompt_full.replace("<subject>", prompt)
|
| 253 |
+
|
| 254 |
+
print("Prompt:", prompt)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 255 |
if prompt == "":
|
| 256 |
+
prompt = "a person"
|
| 257 |
+
print(f"Executing prompt: {prompt}")
|
| 258 |
|
| 259 |
if negative == "":
|
| 260 |
+
negative = None
|
|
|
|
|
|
|
|
|
|
|
|
|
| 261 |
|
| 262 |
print("Custom Loaded LoRA:", custom_lora_path)
|
| 263 |
|
|
|
|
| 266 |
elif custom_lora_path:
|
| 267 |
repo_name = custom_lora_path
|
| 268 |
full_path_lora = custom_lora_path
|
|
|
|
|
|
|
|
|
|
| 269 |
else:
|
| 270 |
+
if selected_state_index >= 0 and selected_state_index < len(sdxl_loras):
|
| 271 |
+
repo_name = sdxl_loras[selected_state_index]["repo"]
|
| 272 |
+
full_path_lora = state_dicts[repo_name]["saved_name"]
|
| 273 |
+
else:
|
| 274 |
+
raise gr.Error("Invalid selection")
|
| 275 |
|
| 276 |
repo_name = repo_name.rstrip("/").lower()
|
| 277 |
|
|
|
|
| 280 |
et = time.time()
|
| 281 |
print('Prompt processing took:', et - st, 'seconds')
|
| 282 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 283 |
st = time.time()
|
| 284 |
|
|
|
|
| 285 |
image = generate_image(
|
| 286 |
prompt, negative, face_emb, face_image, face_kps, image_strength,
|
| 287 |
guidance_scale, face_strength, depth_control_scale, repo_name,
|
|
|
|
| 293 |
run_lora.zerogpu = True
|
| 294 |
|
| 295 |
|
| 296 |
+
@spaces.GPU(duration=75)
|
| 297 |
def generate_image(prompt, negative, face_emb, face_image, face_kps, image_strength, guidance_scale,
|
| 298 |
face_strength, depth_control_scale, repo_name, loaded_state_dict, lora_scale,
|
| 299 |
sdxl_loras, selected_state_index, face_detected, st):
|
|
|
|
| 302 |
print("Loaded state dict:", loaded_state_dict)
|
| 303 |
print("Last LoRA:", last_lora, "| Current LoRA:", repo_name)
|
| 304 |
|
| 305 |
+
# Control images setup
|
| 306 |
+
control_images = [face_kps, zoe(face_image)] if face_detected else [zoe(face_image)]
|
| 307 |
+
control_scales = [face_strength, depth_control_scale] if face_detected else [depth_control_scale]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 308 |
|
| 309 |
# Handle custom LoRA from HuggingFace
|
| 310 |
if repo_name.startswith("https://huggingface.co"):
|
|
|
|
| 321 |
else:
|
| 322 |
full_path_lora = loaded_state_dict
|
| 323 |
|
| 324 |
+
# LoRA loading
|
| 325 |
if last_lora != repo_name:
|
| 326 |
if last_fused:
|
| 327 |
pipe.unfuse_lora()
|
| 328 |
pipe.unload_lora_weights()
|
| 329 |
pipe.unload_textual_inversion()
|
| 330 |
|
| 331 |
+
pipe.load_lora_weights(full_path_lora)
|
| 332 |
+
pipe.fuse_lora(lora_scale)
|
| 333 |
+
last_fused = True
|
| 334 |
+
|
| 335 |
+
# Handle pivotal tuning if needed
|
| 336 |
+
if selected_state_index >= 0 and selected_state_index < len(sdxl_loras):
|
| 337 |
+
is_pivotal = sdxl_loras[selected_state_index]["is_pivotal"]
|
| 338 |
+
if is_pivotal:
|
| 339 |
+
text_embedding_name = sdxl_loras[selected_state_index]["text_embedding_weights"]
|
| 340 |
+
embedding_path = hf_hub_download(repo_id=repo_name, filename=text_embedding_name, repo_type="model")
|
| 341 |
+
state_dict_embedding = load_file(embedding_path)
|
| 342 |
+
pipe.load_textual_inversion(
|
| 343 |
+
state_dict_embedding["clip_l" if "clip_l" in state_dict_embedding else "text_encoders_0"],
|
| 344 |
+
token=["<s0>", "<s1>"],
|
| 345 |
+
text_encoder=pipe.text_encoder,
|
| 346 |
+
tokenizer=pipe.tokenizer
|
| 347 |
+
)
|
| 348 |
+
pipe.load_textual_inversion(
|
| 349 |
+
state_dict_embedding["clip_g" if "clip_g" in state_dict_embedding else "text_encoders_1"],
|
| 350 |
+
token=["<s0>", "<s1>"],
|
| 351 |
+
text_encoder=pipe.text_encoder_2,
|
| 352 |
+
tokenizer=pipe.tokenizer_2
|
| 353 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 354 |
|
| 355 |
print("Processing prompt...")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 356 |
conditioning, pooled = compel(prompt)
|
| 357 |
negative_conditioning, negative_pooled = compel(negative) if negative else (None, None)
|
| 358 |
|
|
|
|
|
|
|
|
|
|
| 359 |
print("Generating image...")
|
| 360 |
image = pipe(
|
| 361 |
prompt_embeds=conditioning,
|
|
|
|
| 366 |
height=face_image.height,
|
| 367 |
image_embeds=face_emb if face_detected else None,
|
| 368 |
image=face_image,
|
| 369 |
+
strength=1-image_strength,
|
| 370 |
control_image=control_images,
|
| 371 |
+
num_inference_steps=36,
|
| 372 |
guidance_scale=guidance_scale,
|
| 373 |
controlnet_conditioning_scale=control_scales,
|
| 374 |
).images[0]
|
|
|
|
| 459 |
gr.Warning("We couldn't find a SDXL LoRA on the model you've sent")
|
| 460 |
raise Exception("We couldn't find a SDXL LoRA on the model you've sent")
|
| 461 |
return model_data["name"], f"{lora_archive}/{safetensors_name}", trigger_word, image_url
|
| 462 |
+
|
| 463 |
def check_custom_model(link):
|
| 464 |
if(link.startswith("https://")):
|
| 465 |
if(link.startswith("https://huggingface.co") or link.startswith("https://www.huggingface.co")):
|
|
|
|
| 501 |
gr_sdxl_loras = gr.State(value=sdxl_loras_raw)
|
| 502 |
title = gr.HTML(
|
| 503 |
"""<h1><img src="https://i.imgur.com/DVoGw04.png">
|
| 504 |
+
<span>LucasArts Style<br><small style="
|
| 505 |
font-size: 13px;
|
| 506 |
display: block;
|
| 507 |
font-weight: normal;
|
| 508 |
opacity: 0.75;
|
| 509 |
+
">🧨 diffusers InstantID + ControlNet</small></span></h1>""",
|
| 510 |
elem_id="title",
|
| 511 |
)
|
| 512 |
selected_state = gr.State()
|
|
|
|
| 515 |
with gr.Row(elem_id="main_app"):
|
| 516 |
with gr.Column(scale=4, elem_id="box_column"):
|
| 517 |
with gr.Group(elem_id="gallery_box"):
|
| 518 |
+
photo = gr.Image(label="Upload a picture", interactive=True, type="pil", height=300)
|
| 519 |
selected_loras = gr.Gallery(label="Selected LoRAs", height=80, show_share_button=False, visible=False, elem_id="gallery_selected")
|
| 520 |
gallery = gr.Gallery(
|
| 521 |
label="LucasArts Style",
|
|
|
|
| 532 |
with gr.Column(scale=5):
|
| 533 |
with gr.Row():
|
| 534 |
prompt = gr.Textbox(label="Prompt", show_label=False, lines=1, max_lines=1,
|
| 535 |
+
info="Describe your subject", value="a person", elem_id="prompt")
|
| 536 |
button = gr.Button("Run", elem_id="run_button")
|
| 537 |
|
| 538 |
result = ImageSlider(
|
|
|
|
| 545 |
share_button = gr.Button("Share to community", elem_id="share-btn")
|
| 546 |
|
| 547 |
with gr.Accordion("Advanced options", open=False):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 548 |
negative = gr.Textbox(label="Negative Prompt")
|
| 549 |
+
weight = gr.Slider(0, 10, value=0.95, step=0.1, label="LoRA weight")
|
| 550 |
face_strength = gr.Slider(
|
| 551 |
+
0, 2, value=0.9, step=0.01, label="Face strength",
|
| 552 |
+
info="Higher values increase face likeness"
|
| 553 |
)
|
| 554 |
image_strength = gr.Slider(
|
| 555 |
+
0, 1, value=0.20, step=0.01, label="Image strength",
|
| 556 |
+
info="Higher values preserve more of the original structure"
|
| 557 |
)
|
| 558 |
guidance_scale = gr.Slider(
|
| 559 |
+
0, 50, value=8, step=0.1, label="Guidance Scale"
|
|
|
|
| 560 |
)
|
| 561 |
depth_control_scale = gr.Slider(
|
| 562 |
+
0, 1, value=0.8, step=0.01, label="Zoe Depth ControlNet strength"
|
|
|
|
| 563 |
)
|
| 564 |
|
| 565 |
prompt_title = gr.Markdown(
|
| 566 |
+
value="### Click on a LoRA in the gallery to select it",
|
| 567 |
visible=True,
|
| 568 |
elem_id="selected_lora",
|
| 569 |
)
|
|
|
|
| 594 |
).success(
|
| 595 |
fn=run_lora,
|
| 596 |
inputs=[photo, prompt, negative, weight, selected_state, face_strength, image_strength,
|
| 597 |
+
guidance_scale, depth_control_scale, gr_sdxl_loras, custom_loaded_lora],
|
| 598 |
outputs=[result, share_group],
|
| 599 |
)
|
| 600 |
|
|
|
|
| 605 |
).success(
|
| 606 |
fn=run_lora,
|
| 607 |
inputs=[photo, prompt, negative, weight, selected_state, face_strength, image_strength,
|
| 608 |
+
guidance_scale, depth_control_scale, gr_sdxl_loras, custom_loaded_lora],
|
| 609 |
outputs=[result, share_group],
|
| 610 |
)
|
| 611 |
|