Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,9 +1,12 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import torch
|
| 3 |
-
import spaces
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
torch.jit.script = lambda f: f
|
| 5 |
import timm
|
| 6 |
-
import time
|
| 7 |
|
| 8 |
from huggingface_hub import hf_hub_download, HfFileSystem, ModelCard, snapshot_download
|
| 9 |
from safetensors.torch import load_file
|
|
@@ -28,7 +31,6 @@ from diffusers import AutoencoderKL, DPMSolverMultistepScheduler, UNet2DConditio
|
|
| 28 |
import cv2
|
| 29 |
import torch
|
| 30 |
import numpy as np
|
| 31 |
-
from PIL import Image
|
| 32 |
|
| 33 |
from insightface.app import FaceAnalysis
|
| 34 |
from pipeline_stable_diffusion_xl_instantid_img2img import StableDiffusionXLInstantIDImg2ImgPipeline, draw_kps
|
|
@@ -159,50 +161,6 @@ last_lora = ""
|
|
| 159 |
last_fused = False
|
| 160 |
lora_archive = "/data"
|
| 161 |
|
| 162 |
-
# Enhanced face detection with better face quality filtering
|
| 163 |
-
def detect_faces(face_image, use_multiple_faces=False):
|
| 164 |
-
"""
|
| 165 |
-
Detect faces in the image with quality filtering
|
| 166 |
-
Returns: list of face info dictionaries, or empty list if no faces
|
| 167 |
-
"""
|
| 168 |
-
try:
|
| 169 |
-
face_info_list = app.get(cv2.cvtColor(np.array(face_image), cv2.COLOR_RGB2BGR))
|
| 170 |
-
|
| 171 |
-
if not face_info_list or len(face_info_list) == 0:
|
| 172 |
-
print("No faces detected")
|
| 173 |
-
return []
|
| 174 |
-
|
| 175 |
-
# Filter faces by quality score if available
|
| 176 |
-
filtered_faces = []
|
| 177 |
-
for face_info in face_info_list:
|
| 178 |
-
# Check if face has minimum quality
|
| 179 |
-
if 'det_score' in face_info and face_info['det_score'] > 0.5:
|
| 180 |
-
filtered_faces.append(face_info)
|
| 181 |
-
elif 'det_score' not in face_info:
|
| 182 |
-
filtered_faces.append(face_info)
|
| 183 |
-
|
| 184 |
-
if not filtered_faces:
|
| 185 |
-
print("No high-quality faces detected")
|
| 186 |
-
return []
|
| 187 |
-
|
| 188 |
-
# Sort faces by size (largest first)
|
| 189 |
-
filtered_faces = sorted(
|
| 190 |
-
filtered_faces,
|
| 191 |
-
key=lambda x: (x['bbox'][2] - x['bbox'][0]) * (x['bbox'][3] - x['bbox'][1]),
|
| 192 |
-
reverse=True
|
| 193 |
-
)
|
| 194 |
-
|
| 195 |
-
if use_multiple_faces:
|
| 196 |
-
print(f"Detected {len(filtered_faces)} high-quality faces")
|
| 197 |
-
return filtered_faces
|
| 198 |
-
else:
|
| 199 |
-
print(f"Using largest face (detected {len(filtered_faces)} total)")
|
| 200 |
-
return [filtered_faces[0]]
|
| 201 |
-
|
| 202 |
-
except Exception as e:
|
| 203 |
-
print(f"Face detection error: {e}")
|
| 204 |
-
return []
|
| 205 |
-
|
| 206 |
def process_face_embeddings_separately(face_info_list):
|
| 207 |
"""
|
| 208 |
Process face embeddings separately for multi-face generation
|
|
@@ -300,42 +258,152 @@ def check_selected(selected_state, custom_lora):
|
|
| 300 |
if not selected_state and not custom_lora:
|
| 301 |
raise gr.Error("You must select a style")
|
| 302 |
|
| 303 |
-
def
|
| 304 |
-
|
| 305 |
-
|
| 306 |
|
| 307 |
-
|
| 308 |
-
|
| 309 |
-
|
| 310 |
-
else: # Portrait
|
| 311 |
-
new_height = min(max_dim, height)
|
| 312 |
-
new_width = int(new_height * aspect_ratio)
|
| 313 |
|
| 314 |
-
|
| 315 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 316 |
|
| 317 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 318 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 319 |
|
|
|
|
| 320 |
def run_lora(face_image, prompt, negative, lora_scale, selected_state, face_strength, image_strength,
|
| 321 |
guidance_scale, depth_control_scale, sdxl_loras, custom_lora, use_multiple_faces=False,
|
| 322 |
progress=gr.Progress(track_tqdm=True)):
|
| 323 |
"""
|
| 324 |
Enhanced run_lora with improved face preservation and landscape mode
|
|
|
|
| 325 |
"""
|
| 326 |
print("Custom LoRA:", custom_lora)
|
| 327 |
custom_lora_path = custom_lora[0] if custom_lora else None
|
| 328 |
selected_state_index = selected_state.index if selected_state else -1
|
| 329 |
|
| 330 |
st = time.time()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 331 |
face_image = resize_image_aspect_ratio(face_image)
|
| 332 |
|
| 333 |
-
# Enhanced face detection
|
| 334 |
face_info_list = detect_faces(face_image, use_multiple_faces)
|
| 335 |
face_detected = len(face_info_list) > 0
|
| 336 |
|
| 337 |
if face_detected:
|
| 338 |
-
#
|
| 339 |
face_embeddings = process_face_embeddings_separately(face_info_list)
|
| 340 |
face_kps = create_face_kps_image(face_image, face_info_list)
|
| 341 |
print(f"Processing with {len(face_info_list)} face(s) separately")
|
|
@@ -396,7 +464,7 @@ def run_lora(face_image, prompt, negative, lora_scale, selected_state, face_stre
|
|
| 396 |
et = time.time()
|
| 397 |
print('Prompt processing took:', et - st, 'seconds')
|
| 398 |
|
| 399 |
-
#
|
| 400 |
if not face_detected:
|
| 401 |
# Enhanced landscape mode parameters
|
| 402 |
face_strength = 0.0
|
|
@@ -411,22 +479,32 @@ def run_lora(face_image, prompt, negative, lora_scale, selected_state, face_stre
|
|
| 411 |
|
| 412 |
st = time.time()
|
| 413 |
|
| 414 |
-
#
|
| 415 |
-
|
| 416 |
-
|
| 417 |
-
|
| 418 |
-
|
| 419 |
-
|
| 420 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 421 |
return (face_image, image), gr.update(visible=True)
|
| 422 |
|
| 423 |
-
run_lora.zerogpu = True
|
| 424 |
-
|
| 425 |
|
| 426 |
-
@spaces.GPU
|
| 427 |
-
def
|
| 428 |
-
|
| 429 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 430 |
global last_fused, last_lora
|
| 431 |
|
| 432 |
print("Loaded state dict:", loaded_state_dict)
|
|
@@ -502,6 +580,8 @@ def generate_image(prompt, negative, face_emb, face_image, face_kps, image_stren
|
|
| 502 |
num_inference_steps = 50 # Increased for better quality
|
| 503 |
|
| 504 |
print("Generating image...")
|
|
|
|
|
|
|
| 505 |
image = pipe(
|
| 506 |
prompt_embeds=conditioning,
|
| 507 |
pooled_prompt_embeds=pooled,
|
|
@@ -518,128 +598,79 @@ def generate_image(prompt, negative, face_emb, face_image, face_kps, image_stren
|
|
| 518 |
controlnet_conditioning_scale=control_scales,
|
| 519 |
).images[0]
|
| 520 |
|
|
|
|
|
|
|
| 521 |
last_lora = repo_name
|
| 522 |
return image
|
| 523 |
|
| 524 |
-
def shuffle_gallery(sdxl_loras):
|
| 525 |
-
random.shuffle(sdxl_loras)
|
| 526 |
-
return [(item["image"], item["title"]) for item in sdxl_loras], sdxl_loras
|
| 527 |
|
| 528 |
-
|
| 529 |
-
|
| 530 |
-
|
| 531 |
-
|
| 532 |
-
|
| 533 |
-
|
| 534 |
-
|
| 535 |
-
|
| 536 |
-
return classify_gallery(sdxl_loras)
|
| 537 |
|
| 538 |
-
|
| 539 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 540 |
|
| 541 |
-
def get_huggingface_safetensors(link):
|
| 542 |
-
split_link = link.split("/")
|
| 543 |
-
if(len(split_link) == 2):
|
| 544 |
-
model_card = ModelCard.load(link)
|
| 545 |
-
image_path = model_card.data.get("widget", [{}])[0].get("output", {}).get("url", None)
|
| 546 |
-
trigger_word = model_card.data.get("instance_prompt", "")
|
| 547 |
-
image_url = f"https://huggingface.co/{link}/resolve/main/{image_path}" if image_path else None
|
| 548 |
-
fs = HfFileSystem()
|
| 549 |
-
try:
|
| 550 |
-
list_of_files = fs.ls(link, detail=False)
|
| 551 |
-
for file in list_of_files:
|
| 552 |
-
if(file.endswith(".safetensors")):
|
| 553 |
-
safetensors_name = file.replace("/", "_")
|
| 554 |
-
if(not os.path.exists(f"{lora_archive}/{safetensors_name}")):
|
| 555 |
-
fs.get_file(file, lpath=f"{lora_archive}/{safetensors_name}")
|
| 556 |
-
if (not image_url and file.lower().endswith((".jpg", ".jpeg", ".png", ".webp"))):
|
| 557 |
-
image_elements = file.split("/")
|
| 558 |
-
image_url = f"https://huggingface.co/{link}/resolve/main/{image_elements[-1]}"
|
| 559 |
-
except:
|
| 560 |
-
gr.Warning("You didn't include a link neither a valid Hugging Face repository with a *.safetensors LoRA")
|
| 561 |
-
raise Exception("You didn't include a link neither a valid Hugging Face repository with a *.safetensors LoRA")
|
| 562 |
-
return split_link[1], f"{lora_archive}/{safetensors_name}", trigger_word, image_url
|
| 563 |
|
| 564 |
-
def
|
| 565 |
-
|
| 566 |
-
|
| 567 |
-
|
| 568 |
-
if(regex_match):
|
| 569 |
-
civitai_model_id = regex_match.group(1)
|
| 570 |
-
else:
|
| 571 |
-
gr.Warning("No CivitAI model id found in your URL")
|
| 572 |
-
raise Exception("No CivitAI model id found in your URL")
|
| 573 |
-
model_request_url = f"https://civitai.com/api/v1/models/{civitai_model_id}?token={os.getenv('CIVITAI_TOKEN')}"
|
| 574 |
-
x = requests.get(model_request_url)
|
| 575 |
-
if(x.status_code != 200):
|
| 576 |
-
raise Exception("Invalid CivitAI URL")
|
| 577 |
-
model_data = x.json()
|
| 578 |
-
|
| 579 |
-
if(model_data["type"] != "LORA"):
|
| 580 |
-
gr.Warning("The model isn't tagged at CivitAI as a LoRA")
|
| 581 |
-
raise Exception("The model isn't tagged at CivitAI as a LoRA")
|
| 582 |
-
|
| 583 |
-
model_link_download = None
|
| 584 |
-
image_url = None
|
| 585 |
-
trigger_word = ""
|
| 586 |
-
for model in model_data["modelVersions"]:
|
| 587 |
-
if(model["baseModel"] == "SDXL 1.0"):
|
| 588 |
-
model_link_download = f"{model['downloadUrl']}/?token={os.getenv('CIVITAI_TOKEN')}"
|
| 589 |
-
safetensors_name = model["files"][0]["name"]
|
| 590 |
-
if(not os.path.exists(f"{lora_archive}/{safetensors_name}")):
|
| 591 |
-
safetensors_file_request = requests.get(model_link_download)
|
| 592 |
-
if(safetensors_file_request.status_code != 200):
|
| 593 |
-
raise Exception("Invalid CivitAI download link")
|
| 594 |
-
with open(f"{lora_archive}/{safetensors_name}", 'wb') as file:
|
| 595 |
-
file.write(safetensors_file_request.content)
|
| 596 |
-
trigger_word = model.get("trainedWords", [""])[0]
|
| 597 |
-
for image in model["images"]:
|
| 598 |
-
if(image["nsfwLevel"] == 1):
|
| 599 |
-
image_url = image["url"]
|
| 600 |
-
break
|
| 601 |
-
break
|
| 602 |
-
|
| 603 |
-
if(not model_link_download):
|
| 604 |
-
gr.Warning("We couldn't find a SDXL LoRA on the model you've sent")
|
| 605 |
-
raise Exception("We couldn't find a SDXL LoRA on the model you've sent")
|
| 606 |
-
return model_data["name"], f"{lora_archive}/{safetensors_name}", trigger_word, image_url
|
| 607 |
|
| 608 |
-
|
| 609 |
-
|
| 610 |
-
|
| 611 |
-
|
| 612 |
-
|
| 613 |
-
|
| 614 |
-
return get_civitai_safetensors(link)
|
| 615 |
-
else:
|
| 616 |
-
return get_huggingface_safetensors(link)
|
| 617 |
|
| 618 |
-
|
| 619 |
-
|
| 620 |
-
|
| 621 |
-
|
| 622 |
-
card = f'''
|
| 623 |
-
<div class="custom_lora_card">
|
| 624 |
-
<span>Loaded custom LoRA:</span>
|
| 625 |
-
<div class="card_internal">
|
| 626 |
-
<img src="{image}" />
|
| 627 |
-
<div>
|
| 628 |
-
<h3>{title}</h3>
|
| 629 |
-
<small>{"Using: <code><b>"+trigger_word+"</code></b> as the trigger word" if trigger_word else "No trigger word found. If there's a trigger word, include it in your prompt"}<br></small>
|
| 630 |
-
</div>
|
| 631 |
-
</div>
|
| 632 |
-
</div>
|
| 633 |
-
'''
|
| 634 |
-
return gr.update(visible=True), card, gr.update(visible=True), [path, trigger_word], gr.Gallery(selected_index=None), f"Custom: {path}"
|
| 635 |
-
except Exception as e:
|
| 636 |
-
gr.Warning("Invalid LoRA: either you entered an invalid link, a non-SDXL LoRA or a LoRA with mature content")
|
| 637 |
-
return gr.update(visible=True), "Invalid LoRA: either you entered an invalid link, a non-SDXL LoRA or a LoRA with mature content", gr.update(visible=False), None, gr.update(visible=True), gr.update(visible=True)
|
| 638 |
-
else:
|
| 639 |
-
return gr.update(visible=False), "", gr.update(visible=False), None, gr.update(visible=True), gr.update(visible=True)
|
| 640 |
|
| 641 |
-
|
| 642 |
-
|
|
|
|
|
|
|
|
|
|
| 643 |
|
| 644 |
# Build Gradio interface
|
| 645 |
with gr.Blocks(css="custom.css") as demo:
|
|
@@ -755,7 +786,7 @@ with gr.Blocks(css="custom.css") as demo:
|
|
| 755 |
inputs=[selected_state, custom_loaded_lora],
|
| 756 |
show_progress=False
|
| 757 |
).success(
|
| 758 |
-
fn=run_lora,
|
| 759 |
inputs=[photo, prompt, negative, weight, selected_state, face_strength, image_strength,
|
| 760 |
guidance_scale, depth_control_scale, gr_sdxl_loras, custom_loaded_lora, use_multiple_faces],
|
| 761 |
outputs=[result, share_group],
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import torch
|
| 3 |
+
import spaces # Make sure this is imported
|
| 4 |
+
import time
|
| 5 |
+
from typing import Optional, List
|
| 6 |
+
import numpy as np
|
| 7 |
+
from PIL import Image
|
| 8 |
torch.jit.script = lambda f: f
|
| 9 |
import timm
|
|
|
|
| 10 |
|
| 11 |
from huggingface_hub import hf_hub_download, HfFileSystem, ModelCard, snapshot_download
|
| 12 |
from safetensors.torch import load_file
|
|
|
|
| 31 |
import cv2
|
| 32 |
import torch
|
| 33 |
import numpy as np
|
|
|
|
| 34 |
|
| 35 |
from insightface.app import FaceAnalysis
|
| 36 |
from pipeline_stable_diffusion_xl_instantid_img2img import StableDiffusionXLInstantIDImg2ImgPipeline, draw_kps
|
|
|
|
| 161 |
last_fused = False
|
| 162 |
lora_archive = "/data"
|
| 163 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 164 |
def process_face_embeddings_separately(face_info_list):
|
| 165 |
"""
|
| 166 |
Process face embeddings separately for multi-face generation
|
|
|
|
| 258 |
if not selected_state and not custom_lora:
|
| 259 |
raise gr.Error("You must select a style")
|
| 260 |
|
| 261 |
+
def shuffle_gallery(sdxl_loras):
|
| 262 |
+
random.shuffle(sdxl_loras)
|
| 263 |
+
return [(item["image"], item["title"]) for item in sdxl_loras], sdxl_loras
|
| 264 |
|
| 265 |
+
def classify_gallery(sdxl_loras):
|
| 266 |
+
sorted_gallery = sorted(sdxl_loras, key=lambda x: x.get("likes", 0), reverse=True)
|
| 267 |
+
return [(item["image"], item["title"]) for item in sorted_gallery], sorted_gallery
|
|
|
|
|
|
|
|
|
|
| 268 |
|
| 269 |
+
def swap_gallery(order, sdxl_loras):
|
| 270 |
+
if(order == "random"):
|
| 271 |
+
return shuffle_gallery(sdxl_loras)
|
| 272 |
+
else:
|
| 273 |
+
return classify_gallery(sdxl_loras)
|
| 274 |
+
|
| 275 |
+
def deselect():
|
| 276 |
+
return gr.Gallery(selected_index=None)
|
| 277 |
|
| 278 |
+
def get_huggingface_safetensors(link):
|
| 279 |
+
split_link = link.split("/")
|
| 280 |
+
if(len(split_link) == 2):
|
| 281 |
+
model_card = ModelCard.load(link)
|
| 282 |
+
image_path = model_card.data.get("widget", [{}])[0].get("output", {}).get("url", None)
|
| 283 |
+
trigger_word = model_card.data.get("instance_prompt", "")
|
| 284 |
+
image_url = f"https://huggingface.co/{link}/resolve/main/{image_path}" if image_path else None
|
| 285 |
+
fs = HfFileSystem()
|
| 286 |
+
try:
|
| 287 |
+
list_of_files = fs.ls(link, detail=False)
|
| 288 |
+
for file in list_of_files:
|
| 289 |
+
if(file.endswith(".safetensors")):
|
| 290 |
+
safetensors_name = file.replace("/", "_")
|
| 291 |
+
if(not os.path.exists(f"{lora_archive}/{safetensors_name}")):
|
| 292 |
+
fs.get_file(file, lpath=f"{lora_archive}/{safetensors_name}")
|
| 293 |
+
if (not image_url and file.lower().endswith((".jpg", ".jpeg", ".png", ".webp"))):
|
| 294 |
+
image_elements = file.split("/")
|
| 295 |
+
image_url = f"https://huggingface.co/{link}/resolve/main/{image_elements[-1]}"
|
| 296 |
+
except:
|
| 297 |
+
gr.Warning("You didn't include a link neither a valid Hugging Face repository with a *.safetensors LoRA")
|
| 298 |
+
raise Exception("You didn't include a link neither a valid Hugging Face repository with a *.safetensors LoRA")
|
| 299 |
+
return split_link[1], f"{lora_archive}/{safetensors_name}", trigger_word, image_url
|
| 300 |
|
| 301 |
+
def get_civitai_safetensors(link):
|
| 302 |
+
link_split = link.split("civitai.com/")
|
| 303 |
+
pattern = re.compile(r'models\/(\d+)')
|
| 304 |
+
regex_match = pattern.search(link_split[1])
|
| 305 |
+
if(regex_match):
|
| 306 |
+
civitai_model_id = regex_match.group(1)
|
| 307 |
+
else:
|
| 308 |
+
gr.Warning("No CivitAI model id found in your URL")
|
| 309 |
+
raise Exception("No CivitAI model id found in your URL")
|
| 310 |
+
model_request_url = f"https://civitai.com/api/v1/models/{civitai_model_id}?token={os.getenv('CIVITAI_TOKEN')}"
|
| 311 |
+
x = requests.get(model_request_url)
|
| 312 |
+
if(x.status_code != 200):
|
| 313 |
+
raise Exception("Invalid CivitAI URL")
|
| 314 |
+
model_data = x.json()
|
| 315 |
+
|
| 316 |
+
if(model_data["type"] != "LORA"):
|
| 317 |
+
gr.Warning("The model isn't tagged at CivitAI as a LoRA")
|
| 318 |
+
raise Exception("The model isn't tagged at CivitAI as a LoRA")
|
| 319 |
+
|
| 320 |
+
model_link_download = None
|
| 321 |
+
image_url = None
|
| 322 |
+
trigger_word = ""
|
| 323 |
+
for model in model_data["modelVersions"]:
|
| 324 |
+
if(model["baseModel"] == "SDXL 1.0"):
|
| 325 |
+
model_link_download = f"{model['downloadUrl']}/?token={os.getenv('CIVITAI_TOKEN')}"
|
| 326 |
+
safetensors_name = model["files"][0]["name"]
|
| 327 |
+
if(not os.path.exists(f"{lora_archive}/{safetensors_name}")):
|
| 328 |
+
safetensors_file_request = requests.get(model_link_download)
|
| 329 |
+
if(safetensors_file_request.status_code != 200):
|
| 330 |
+
raise Exception("Invalid CivitAI download link")
|
| 331 |
+
with open(f"{lora_archive}/{safetensors_name}", 'wb') as file:
|
| 332 |
+
file.write(safetensors_file_request.content)
|
| 333 |
+
trigger_word = model.get("trainedWords", [""])[0]
|
| 334 |
+
for image in model["images"]:
|
| 335 |
+
if(image["nsfwLevel"] == 1):
|
| 336 |
+
image_url = image["url"]
|
| 337 |
+
break
|
| 338 |
+
break
|
| 339 |
+
|
| 340 |
+
if(not model_link_download):
|
| 341 |
+
gr.Warning("We couldn't find a SDXL LoRA on the model you've sent")
|
| 342 |
+
raise Exception("We couldn't find a SDXL LoRA on the model you've sent")
|
| 343 |
+
return model_data["name"], f"{lora_archive}/{safetensors_name}", trigger_word, image_url
|
| 344 |
+
|
| 345 |
+
def check_custom_model(link):
|
| 346 |
+
if(link.startswith("https://")):
|
| 347 |
+
if(link.startswith("https://huggingface.co") or link.startswith("https://www.huggingface.co")):
|
| 348 |
+
link_split = link.split("huggingface.co/")
|
| 349 |
+
return get_huggingface_safetensors(link_split[1])
|
| 350 |
+
elif(link.startswith("https://civitai.com") or link.startswith("https://www.civitai.com")):
|
| 351 |
+
return get_civitai_safetensors(link)
|
| 352 |
+
else:
|
| 353 |
+
return get_huggingface_safetensors(link)
|
| 354 |
+
|
| 355 |
+
def load_custom_lora(link):
|
| 356 |
+
if(link):
|
| 357 |
+
try:
|
| 358 |
+
title, path, trigger_word, image = check_custom_model(link)
|
| 359 |
+
card = f'''
|
| 360 |
+
<div class="custom_lora_card">
|
| 361 |
+
<span>Loaded custom LoRA:</span>
|
| 362 |
+
<div class="card_internal">
|
| 363 |
+
<img src="{image}" />
|
| 364 |
+
<div>
|
| 365 |
+
<h3>{title}</h3>
|
| 366 |
+
<small>{"Using: <code><b>"+trigger_word+"</code></b> as the trigger word" if trigger_word else "No trigger word found. If there's a trigger word, include it in your prompt"}<br></small>
|
| 367 |
+
</div>
|
| 368 |
+
</div>
|
| 369 |
+
</div>
|
| 370 |
+
'''
|
| 371 |
+
return gr.update(visible=True), card, gr.update(visible=True), [path, trigger_word], gr.Gallery(selected_index=None), f"Custom: {path}"
|
| 372 |
+
except Exception as e:
|
| 373 |
+
gr.Warning("Invalid LoRA: either you entered an invalid link, a non-SDXL LoRA or a LoRA with mature content")
|
| 374 |
+
return gr.update(visible=True), "Invalid LoRA: either you entered an invalid link, a non-SDXL LoRA or a LoRA with mature content", gr.update(visible=False), None, gr.update(visible=True), gr.update(visible=True)
|
| 375 |
+
else:
|
| 376 |
+
return gr.update(visible=False), "", gr.update(visible=False), None, gr.update(visible=True), gr.update(visible=True)
|
| 377 |
+
|
| 378 |
+
def remove_custom_lora():
|
| 379 |
+
return "", gr.update(visible=False), gr.update(visible=False), None
|
| 380 |
|
| 381 |
+
@spaces.GPU(duration=120)
|
| 382 |
def run_lora(face_image, prompt, negative, lora_scale, selected_state, face_strength, image_strength,
|
| 383 |
guidance_scale, depth_control_scale, sdxl_loras, custom_lora, use_multiple_faces=False,
|
| 384 |
progress=gr.Progress(track_tqdm=True)):
|
| 385 |
"""
|
| 386 |
Enhanced run_lora with improved face preservation and landscape mode
|
| 387 |
+
FIXED: Proper ZeroGPU decorator, no nested GPU calls
|
| 388 |
"""
|
| 389 |
print("Custom LoRA:", custom_lora)
|
| 390 |
custom_lora_path = custom_lora[0] if custom_lora else None
|
| 391 |
selected_state_index = selected_state.index if selected_state else -1
|
| 392 |
|
| 393 |
st = time.time()
|
| 394 |
+
|
| 395 |
+
# Ensure models are on GPU
|
| 396 |
+
pipe.to(device)
|
| 397 |
+
zoe.to(device)
|
| 398 |
+
|
| 399 |
face_image = resize_image_aspect_ratio(face_image)
|
| 400 |
|
| 401 |
+
# Enhanced face detection (CPU operation - InsightFace uses CPU)
|
| 402 |
face_info_list = detect_faces(face_image, use_multiple_faces)
|
| 403 |
face_detected = len(face_info_list) > 0
|
| 404 |
|
| 405 |
if face_detected:
|
| 406 |
+
# Process faces separately instead of averaging
|
| 407 |
face_embeddings = process_face_embeddings_separately(face_info_list)
|
| 408 |
face_kps = create_face_kps_image(face_image, face_info_list)
|
| 409 |
print(f"Processing with {len(face_info_list)} face(s) separately")
|
|
|
|
| 464 |
et = time.time()
|
| 465 |
print('Prompt processing took:', et - st, 'seconds')
|
| 466 |
|
| 467 |
+
# Better parameter adjustment for face/landscape modes
|
| 468 |
if not face_detected:
|
| 469 |
# Enhanced landscape mode parameters
|
| 470 |
face_strength = 0.0
|
|
|
|
| 479 |
|
| 480 |
st = time.time()
|
| 481 |
|
| 482 |
+
# FIXED: Call non-decorated version (inline generation)
|
| 483 |
+
try:
|
| 484 |
+
image = generate_image_inline(
|
| 485 |
+
prompt, negative, face_emb, face_image, face_kps, image_strength,
|
| 486 |
+
guidance_scale, face_strength, depth_control_scale, repo_name,
|
| 487 |
+
full_path_lora, lora_scale, sdxl_loras, selected_state_index, face_detected, st
|
| 488 |
+
)
|
| 489 |
+
except Exception as e:
|
| 490 |
+
print(f"Generation error: {e}")
|
| 491 |
+
torch.cuda.empty_cache()
|
| 492 |
+
raise gr.Error(f"Image generation failed: {str(e)}")
|
| 493 |
+
|
| 494 |
+
# Cleanup GPU memory
|
| 495 |
+
torch.cuda.empty_cache()
|
| 496 |
+
|
| 497 |
return (face_image, image), gr.update(visible=True)
|
| 498 |
|
|
|
|
|
|
|
| 499 |
|
| 500 |
+
# FIXED: Removed @spaces.GPU decorator - this runs within GPU context
|
| 501 |
+
def generate_image_inline(prompt, negative, face_emb, face_image, face_kps, image_strength,
|
| 502 |
+
guidance_scale, face_strength, depth_control_scale, repo_name,
|
| 503 |
+
loaded_state_dict, lora_scale, sdxl_loras, selected_state_index,
|
| 504 |
+
face_detected, st):
|
| 505 |
+
"""
|
| 506 |
+
FIXED: No decorator - called from within GPU context
|
| 507 |
+
"""
|
| 508 |
global last_fused, last_lora
|
| 509 |
|
| 510 |
print("Loaded state dict:", loaded_state_dict)
|
|
|
|
| 580 |
num_inference_steps = 50 # Increased for better quality
|
| 581 |
|
| 582 |
print("Generating image...")
|
| 583 |
+
print(f"GPU Memory before generation: {torch.cuda.memory_allocated() / 1024**3:.2f} GB")
|
| 584 |
+
|
| 585 |
image = pipe(
|
| 586 |
prompt_embeds=conditioning,
|
| 587 |
pooled_prompt_embeds=pooled,
|
|
|
|
| 598 |
controlnet_conditioning_scale=control_scales,
|
| 599 |
).images[0]
|
| 600 |
|
| 601 |
+
print(f"GPU Memory after generation: {torch.cuda.memory_allocated() / 1024**3:.2f} GB")
|
| 602 |
+
|
| 603 |
last_lora = repo_name
|
| 604 |
return image
|
| 605 |
|
|
|
|
|
|
|
|
|
|
| 606 |
|
| 607 |
+
# CPU-bound helper functions (no decorators needed)
|
| 608 |
+
def detect_faces(face_image, use_multiple_faces=False):
|
| 609 |
+
"""
|
| 610 |
+
Detect faces in the image with quality filtering
|
| 611 |
+
CPU operation - no GPU decorator needed
|
| 612 |
+
"""
|
| 613 |
+
try:
|
| 614 |
+
face_info_list = app.get(cv2.cvtColor(np.array(face_image), cv2.COLOR_RGB2BGR))
|
|
|
|
| 615 |
|
| 616 |
+
if not face_info_list or len(face_info_list) == 0:
|
| 617 |
+
print("No faces detected")
|
| 618 |
+
return []
|
| 619 |
+
|
| 620 |
+
# Filter faces by quality score if available
|
| 621 |
+
filtered_faces = []
|
| 622 |
+
for face_info in face_info_list:
|
| 623 |
+
# Check if face has minimum quality
|
| 624 |
+
if 'det_score' in face_info and face_info['det_score'] > 0.5:
|
| 625 |
+
filtered_faces.append(face_info)
|
| 626 |
+
elif 'det_score' not in face_info:
|
| 627 |
+
filtered_faces.append(face_info)
|
| 628 |
+
|
| 629 |
+
if not filtered_faces:
|
| 630 |
+
print("No high-quality faces detected")
|
| 631 |
+
return []
|
| 632 |
+
|
| 633 |
+
# Sort faces by size (largest first)
|
| 634 |
+
filtered_faces = sorted(
|
| 635 |
+
filtered_faces,
|
| 636 |
+
key=lambda x: (x['bbox'][2] - x['bbox'][0]) * (x['bbox'][3] - x['bbox'][1]),
|
| 637 |
+
reverse=True
|
| 638 |
+
)
|
| 639 |
+
|
| 640 |
+
if use_multiple_faces:
|
| 641 |
+
print(f"Detected {len(filtered_faces)} high-quality faces")
|
| 642 |
+
return filtered_faces
|
| 643 |
+
else:
|
| 644 |
+
print(f"Using largest face (detected {len(filtered_faces)} total)")
|
| 645 |
+
return [filtered_faces[0]]
|
| 646 |
+
|
| 647 |
+
except Exception as e:
|
| 648 |
+
print(f"Face detection error: {e}")
|
| 649 |
+
return []
|
| 650 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 651 |
|
| 652 |
+
def resize_image_aspect_ratio(img, max_dim=1280):
|
| 653 |
+
"""CPU operation"""
|
| 654 |
+
width, height = img.size
|
| 655 |
+
aspect_ratio = width / height
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 656 |
|
| 657 |
+
if aspect_ratio >= 1: # Landscape or square
|
| 658 |
+
new_width = min(max_dim, width)
|
| 659 |
+
new_height = int(new_width / aspect_ratio)
|
| 660 |
+
else: # Portrait
|
| 661 |
+
new_height = min(max_dim, height)
|
| 662 |
+
new_width = int(new_height * aspect_ratio)
|
|
|
|
|
|
|
|
|
|
| 663 |
|
| 664 |
+
new_width = (new_width // 8) * 8
|
| 665 |
+
new_height = (new_height // 8) * 8
|
| 666 |
+
|
| 667 |
+
return img.resize((new_width, new_height), Image.LANCZOS)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 668 |
|
| 669 |
+
|
| 670 |
+
def check_selected(selected_state, custom_lora):
|
| 671 |
+
"""CPU operation"""
|
| 672 |
+
if not selected_state and not custom_lora:
|
| 673 |
+
raise gr.Error("You must select a style")
|
| 674 |
|
| 675 |
# Build Gradio interface
|
| 676 |
with gr.Blocks(css="custom.css") as demo:
|
|
|
|
| 786 |
inputs=[selected_state, custom_loaded_lora],
|
| 787 |
show_progress=False
|
| 788 |
).success(
|
| 789 |
+
fn=run_lora, # This now has proper @spaces.GPU decorator
|
| 790 |
inputs=[photo, prompt, negative, weight, selected_state, face_strength, image_strength,
|
| 791 |
guidance_scale, depth_control_scale, gr_sdxl_loras, custom_loaded_lora, use_multiple_faces],
|
| 792 |
outputs=[result, share_group],
|