Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -38,7 +38,9 @@ from compel import Compel, ReturnedEmbeddingsType
|
|
| 38 |
|
| 39 |
from gradio_imageslider import ImageSlider
|
| 40 |
|
| 41 |
-
|
|
|
|
|
|
|
| 42 |
with open("sdxl_loras.json", "r") as file:
|
| 43 |
data = json.load(file)
|
| 44 |
sdxl_loras_raw = [
|
|
@@ -61,11 +63,12 @@ with open("sdxl_loras.json", "r") as file:
|
|
| 61 |
|
| 62 |
with open("defaults_data.json", "r") as file:
|
| 63 |
lora_defaults = json.load(file)
|
|
|
|
| 64 |
|
| 65 |
-
device = "cuda"
|
| 66 |
|
| 67 |
-
# Cache for LoRA state dicts
|
| 68 |
state_dicts = {}
|
|
|
|
| 69 |
for item in sdxl_loras_raw:
|
| 70 |
saved_name = hf_hub_download(item["repo"], item["weights"])
|
| 71 |
|
|
@@ -80,8 +83,8 @@ for item in sdxl_loras_raw:
|
|
| 80 |
}
|
| 81 |
|
| 82 |
sdxl_loras_raw = [item for item in sdxl_loras_raw if item.get("new") != True]
|
| 83 |
-
|
| 84 |
-
#
|
| 85 |
hf_hub_download(
|
| 86 |
repo_id="InstantX/InstantID",
|
| 87 |
filename="ControlNetModel/config.json",
|
|
@@ -100,158 +103,70 @@ hf_hub_download(
|
|
| 100 |
filename="pytorch_lora_weights.safetensors",
|
| 101 |
local_dir="/data/checkpoints",
|
| 102 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 103 |
|
| 104 |
-
# Download antelopev2
|
| 105 |
antelope_download = snapshot_download(repo_id="DIAMONIK7777/antelopev2", local_dir="/data/models/antelopev2")
|
| 106 |
print(antelope_download)
|
| 107 |
app = FaceAnalysis(name='antelopev2', root='/data', providers=['CPUExecutionProvider'])
|
| 108 |
-
app.prepare(ctx_id=0, det_size=(
|
| 109 |
|
| 110 |
-
#
|
| 111 |
face_adapter = f'/data/checkpoints/ip-adapter.bin'
|
| 112 |
controlnet_path = f'/data/checkpoints/ControlNetModel'
|
| 113 |
|
|
|
|
| 114 |
st = time.time()
|
| 115 |
identitynet = ControlNetModel.from_pretrained(controlnet_path, torch_dtype=torch.float16)
|
| 116 |
-
zoedepthnet = ControlNetModel.from_pretrained("diffusers/controlnet-zoe-depth-sdxl-1.0",
|
| 117 |
et = time.time()
|
| 118 |
-
|
| 119 |
-
|
| 120 |
st = time.time()
|
| 121 |
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
|
| 122 |
et = time.time()
|
| 123 |
-
|
| 124 |
-
|
| 125 |
st = time.time()
|
| 126 |
-
pipe = StableDiffusionXLInstantIDImg2ImgPipeline.from_pretrained(
|
| 127 |
-
"SG161222/RealVisXL_V5.0",
|
| 128 |
-
vae=vae,
|
| 129 |
-
controlnet=[identitynet, zoedepthnet],
|
| 130 |
-
torch_dtype=torch.float16
|
| 131 |
-
)
|
| 132 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 133 |
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config, use_karras_sigmas=True)
|
| 134 |
pipe.load_ip_adapter_instantid(face_adapter)
|
| 135 |
-
pipe.set_ip_adapter_scale(0.
|
| 136 |
et = time.time()
|
| 137 |
-
|
| 138 |
-
|
| 139 |
st = time.time()
|
| 140 |
-
compel = Compel(
|
| 141 |
-
tokenizer=[pipe.tokenizer, pipe.tokenizer_2],
|
| 142 |
-
text_encoder=[pipe.text_encoder, pipe.text_encoder_2],
|
| 143 |
-
returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED,
|
| 144 |
-
requires_pooled=[False, True]
|
| 145 |
-
)
|
| 146 |
et = time.time()
|
| 147 |
-
|
|
|
|
| 148 |
|
| 149 |
st = time.time()
|
| 150 |
zoe = ZoeDetector.from_pretrained("lllyasviel/Annotators")
|
| 151 |
et = time.time()
|
| 152 |
-
|
|
|
|
| 153 |
zoe.to(device)
|
| 154 |
pipe.to(device)
|
| 155 |
|
| 156 |
last_lora = ""
|
| 157 |
last_fused = False
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 158 |
lora_archive = "/data"
|
| 159 |
|
| 160 |
-
# Improved face detection with multi-face support
|
| 161 |
-
def detect_faces(face_image, use_multiple_faces=False):
|
| 162 |
-
"""
|
| 163 |
-
Detect faces in the image
|
| 164 |
-
Returns: list of face info dictionaries, or empty list if no faces
|
| 165 |
-
"""
|
| 166 |
-
try:
|
| 167 |
-
face_info_list = app.get(cv2.cvtColor(np.array(face_image), cv2.COLOR_RGB2BGR))
|
| 168 |
-
|
| 169 |
-
if not face_info_list or len(face_info_list) == 0:
|
| 170 |
-
print("No faces detected")
|
| 171 |
-
return []
|
| 172 |
-
|
| 173 |
-
# Sort faces by size (largest first)
|
| 174 |
-
face_info_list = sorted(
|
| 175 |
-
face_info_list,
|
| 176 |
-
key=lambda x: (x['bbox'][2] - x['bbox'][0]) * (x['bbox'][3] - x['bbox'][1]),
|
| 177 |
-
reverse=True
|
| 178 |
-
)
|
| 179 |
-
|
| 180 |
-
if use_multiple_faces:
|
| 181 |
-
print(f"Detected {len(face_info_list)} faces")
|
| 182 |
-
return face_info_list
|
| 183 |
-
else:
|
| 184 |
-
print(f"Using largest face (detected {len(face_info_list)} total)")
|
| 185 |
-
return [face_info_list[0]]
|
| 186 |
-
|
| 187 |
-
except Exception as e:
|
| 188 |
-
print(f"Face detection error: {e}")
|
| 189 |
-
return []
|
| 190 |
-
|
| 191 |
-
def process_face_embeddings(face_info_list):
|
| 192 |
-
"""
|
| 193 |
-
Process face embeddings - average multiple faces or return single face
|
| 194 |
-
"""
|
| 195 |
-
if not face_info_list:
|
| 196 |
-
return None
|
| 197 |
-
|
| 198 |
-
if len(face_info_list) == 1:
|
| 199 |
-
return face_info_list[0]['embedding']
|
| 200 |
-
|
| 201 |
-
# Average embeddings for multiple faces
|
| 202 |
-
embeddings = [face_info['embedding'] for face_info in face_info_list]
|
| 203 |
-
avg_embedding = np.mean(embeddings, axis=0)
|
| 204 |
-
return avg_embedding
|
| 205 |
-
|
| 206 |
-
def create_face_kps_image(face_image, face_info_list):
|
| 207 |
-
"""
|
| 208 |
-
Create keypoints image from face info
|
| 209 |
-
"""
|
| 210 |
-
if not face_info_list:
|
| 211 |
-
return face_image
|
| 212 |
-
|
| 213 |
-
# For multiple faces, draw all keypoints
|
| 214 |
-
if len(face_info_list) > 1:
|
| 215 |
-
return draw_multiple_kps(face_image, [f['kps'] for f in face_info_list])
|
| 216 |
-
else:
|
| 217 |
-
return draw_kps(face_image, face_info_list[0]['kps'])
|
| 218 |
-
|
| 219 |
-
def draw_multiple_kps(image_pil, kps_list, color_list=[(255, 0, 0), (0, 255, 0), (0, 0, 255), (255, 255, 0), (255, 0, 255)]):
|
| 220 |
-
"""
|
| 221 |
-
Draw keypoints for multiple faces
|
| 222 |
-
"""
|
| 223 |
-
stickwidth = 4
|
| 224 |
-
limbSeq = np.array([[0, 2], [1, 2], [3, 2], [4, 2]])
|
| 225 |
-
|
| 226 |
-
w, h = image_pil.size
|
| 227 |
-
out_img = np.zeros([h, w, 3])
|
| 228 |
-
|
| 229 |
-
for kps in kps_list:
|
| 230 |
-
kps = np.array(kps)
|
| 231 |
-
|
| 232 |
-
for i in range(len(limbSeq)):
|
| 233 |
-
index = limbSeq[i]
|
| 234 |
-
color = color_list[index[0]]
|
| 235 |
-
|
| 236 |
-
x = kps[index][:, 0]
|
| 237 |
-
y = kps[index][:, 1]
|
| 238 |
-
length = ((x[0] - x[1]) ** 2 + (y[0] - y[1]) ** 2) ** 0.5
|
| 239 |
-
angle = np.degrees(np.arctan2(y[0] - y[1], x[0] - x[1]))
|
| 240 |
-
polygon = cv2.ellipse2Poly(
|
| 241 |
-
(int(np.mean(x)), int(np.mean(y))), (int(length / 2), stickwidth), int(angle), 0, 360, 1
|
| 242 |
-
)
|
| 243 |
-
out_img = cv2.fillConvexPoly(out_img.copy(), polygon, color)
|
| 244 |
-
|
| 245 |
-
out_img = (out_img * 0.6).astype(np.uint8)
|
| 246 |
-
|
| 247 |
-
for idx_kp, kp in enumerate(kps):
|
| 248 |
-
color = color_list[idx_kp]
|
| 249 |
-
x, y = kp
|
| 250 |
-
out_img = cv2.circle(out_img.copy(), (int(x), int(y)), 10, color, -1)
|
| 251 |
-
|
| 252 |
-
out_img_pil = Image.fromarray(out_img.astype(np.uint8))
|
| 253 |
-
return out_img_pil
|
| 254 |
-
|
| 255 |
def update_selection(selected_state: gr.SelectData, sdxl_loras, face_strength, image_strength, weight, depth_control_scale, negative, is_new=False):
|
| 256 |
lora_repo = sdxl_loras[selected_state.index]["repo"]
|
| 257 |
new_placeholder = "Type a prompt to use your selected LoRA"
|
|
@@ -260,9 +175,9 @@ def update_selection(selected_state: gr.SelectData, sdxl_loras, face_strength, i
|
|
| 260 |
|
| 261 |
for lora_list in lora_defaults:
|
| 262 |
if lora_list["model"] == sdxl_loras[selected_state.index]["repo"]:
|
| 263 |
-
face_strength = lora_list.get("face_strength", 0.
|
| 264 |
-
image_strength = lora_list.get("image_strength", 0.
|
| 265 |
-
weight = lora_list.get("weight", 0.
|
| 266 |
depth_control_scale = lora_list.get("depth_control_scale", 0.8)
|
| 267 |
negative = lora_list.get("negative", "")
|
| 268 |
|
|
@@ -283,82 +198,157 @@ def update_selection(selected_state: gr.SelectData, sdxl_loras, face_strength, i
|
|
| 283 |
selected_state
|
| 284 |
)
|
| 285 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 286 |
def check_selected(selected_state, custom_lora):
|
| 287 |
if not selected_state and not custom_lora:
|
| 288 |
raise gr.Error("You must select a style")
|
| 289 |
|
| 290 |
-
def
|
| 291 |
-
|
| 292 |
-
|
| 293 |
-
|
| 294 |
-
|
| 295 |
-
|
| 296 |
-
|
| 297 |
-
|
| 298 |
-
|
| 299 |
-
|
| 300 |
-
|
| 301 |
-
|
| 302 |
-
|
| 303 |
-
|
| 304 |
-
|
| 305 |
-
|
| 306 |
-
|
| 307 |
-
|
| 308 |
-
|
| 309 |
-
|
| 310 |
-
|
| 311 |
-
Enhanced run_lora with support for:
|
| 312 |
-
- No faces (landscape mode)
|
| 313 |
-
- Multiple faces
|
| 314 |
-
- Improved results
|
| 315 |
-
"""
|
| 316 |
-
print("Custom LoRA:", custom_lora)
|
| 317 |
-
custom_lora_path = custom_lora[0] if custom_lora else None
|
| 318 |
-
selected_state_index = selected_state.index if selected_state else -1
|
| 319 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 320 |
st = time.time()
|
| 321 |
-
|
| 322 |
-
|
| 323 |
-
|
| 324 |
-
|
| 325 |
-
|
| 326 |
-
|
| 327 |
-
|
| 328 |
-
|
| 329 |
-
|
| 330 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 331 |
else:
|
| 332 |
-
|
| 333 |
-
|
| 334 |
-
|
| 335 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 336 |
et = time.time()
|
| 337 |
-
|
|
|
|
| 338 |
|
| 339 |
st = time.time()
|
| 340 |
|
| 341 |
-
|
| 342 |
-
if custom_lora_path and custom_lora[1]:
|
| 343 |
prompt = f"{prompt} {custom_lora[1]}"
|
| 344 |
else:
|
| 345 |
for lora_list in lora_defaults:
|
| 346 |
if lora_list["model"] == sdxl_loras[selected_state_index]["repo"]:
|
| 347 |
prompt_full = lora_list.get("prompt", None)
|
| 348 |
-
if
|
| 349 |
prompt = prompt_full.replace("<subject>", prompt)
|
| 350 |
|
| 351 |
-
print("Prompt:", prompt)
|
| 352 |
-
if
|
| 353 |
-
prompt = "a
|
| 354 |
print(f"Executing prompt: {prompt}")
|
| 355 |
-
|
|
|
|
| 356 |
if negative == "":
|
| 357 |
-
|
| 358 |
-
|
| 359 |
-
|
| 360 |
-
print("Custom Loaded LoRA:", custom_lora_path)
|
| 361 |
-
|
| 362 |
if not selected_state and not custom_lora_path:
|
| 363 |
raise gr.Error("You must select a style")
|
| 364 |
elif custom_lora_path:
|
|
@@ -366,130 +356,21 @@ def run_lora(face_image, prompt, negative, lora_scale, selected_state, face_stre
|
|
| 366 |
full_path_lora = custom_lora_path
|
| 367 |
else:
|
| 368 |
repo_name = sdxl_loras[selected_state_index]["repo"]
|
|
|
|
| 369 |
full_path_lora = state_dicts[repo_name]["saved_name"]
|
| 370 |
-
|
| 371 |
-
|
| 372 |
-
|
| 373 |
-
print("Full path LoRA", full_path_lora)
|
| 374 |
-
|
| 375 |
et = time.time()
|
| 376 |
-
|
| 377 |
-
|
| 378 |
-
# Adjust parameters based on face detection
|
| 379 |
-
if not face_detected:
|
| 380 |
-
# For landscape/no face mode, reduce face strength and increase depth control
|
| 381 |
-
face_strength = 0.0
|
| 382 |
-
depth_control_scale = max(depth_control_scale, 0.9)
|
| 383 |
-
image_strength = min(image_strength, 0.4)
|
| 384 |
-
print("Adjusted parameters for no-face mode")
|
| 385 |
|
| 386 |
st = time.time()
|
| 387 |
-
image = generate_image(
|
| 388 |
-
prompt, negative, face_emb, face_image, face_kps, image_strength,
|
| 389 |
-
guidance_scale, face_strength, depth_control_scale, repo_name,
|
| 390 |
-
full_path_lora, lora_scale, sdxl_loras, selected_state_index, face_detected, st
|
| 391 |
-
)
|
| 392 |
-
|
| 393 |
return (face_image, image), gr.update(visible=True)
|
| 394 |
|
| 395 |
run_lora.zerogpu = True
|
| 396 |
|
| 397 |
-
|
| 398 |
-
@spaces.GPU(duration=75)
|
| 399 |
-
def generate_image(prompt, negative, face_emb, face_image, face_kps, image_strength, guidance_scale,
|
| 400 |
-
face_strength, depth_control_scale, repo_name, loaded_state_dict, lora_scale,
|
| 401 |
-
sdxl_loras, selected_state_index, face_detected, st):
|
| 402 |
-
global last_fused, last_lora
|
| 403 |
-
|
| 404 |
-
print("Loaded state dict:", loaded_state_dict)
|
| 405 |
-
print("Last LoRA:", last_lora, "| Current LoRA:", repo_name)
|
| 406 |
-
|
| 407 |
-
# Prepare control images and scales based on face detection
|
| 408 |
-
if face_detected:
|
| 409 |
-
control_images = [face_kps, zoe(face_image)]
|
| 410 |
-
control_scales = [face_strength, depth_control_scale]
|
| 411 |
-
else:
|
| 412 |
-
# Only use depth control for landscapes
|
| 413 |
-
control_images = [zoe(face_image)]
|
| 414 |
-
control_scales = [depth_control_scale]
|
| 415 |
-
|
| 416 |
-
# Handle custom LoRA from HuggingFace
|
| 417 |
-
if repo_name.startswith("https://huggingface.co"):
|
| 418 |
-
repo_id = repo_name.split("huggingface.co/")[-1]
|
| 419 |
-
fs = HfFileSystem()
|
| 420 |
-
files = fs.ls(repo_id, detail=False)
|
| 421 |
-
safetensors_files = [f for f in files if f.endswith(".safetensors")]
|
| 422 |
-
|
| 423 |
-
if not safetensors_files:
|
| 424 |
-
raise gr.Error("No .safetensors file found in this Hugging Face repository.")
|
| 425 |
-
|
| 426 |
-
weight_file = safetensors_files[0]
|
| 427 |
-
full_path_lora = hf_hub_download(repo_id=repo_id, filename=weight_file, repo_type="model")
|
| 428 |
-
else:
|
| 429 |
-
full_path_lora = loaded_state_dict
|
| 430 |
-
|
| 431 |
-
# Improved LoRA loading and caching
|
| 432 |
-
if last_lora != repo_name:
|
| 433 |
-
if last_fused:
|
| 434 |
-
pipe.unfuse_lora()
|
| 435 |
-
pipe.unload_lora_weights()
|
| 436 |
-
pipe.unload_textual_inversion()
|
| 437 |
-
|
| 438 |
-
# Load LoRA with better error handling
|
| 439 |
-
try:
|
| 440 |
-
pipe.load_lora_weights(full_path_lora)
|
| 441 |
-
pipe.fuse_lora(lora_scale)
|
| 442 |
-
last_fused = True
|
| 443 |
-
|
| 444 |
-
# Handle pivotal tuning embeddings
|
| 445 |
-
is_pivotal = sdxl_loras[selected_state_index]["is_pivotal"]
|
| 446 |
-
if is_pivotal:
|
| 447 |
-
text_embedding_name = sdxl_loras[selected_state_index]["text_embedding_weights"]
|
| 448 |
-
embedding_path = hf_hub_download(repo_id=repo_name, filename=text_embedding_name, repo_type="model")
|
| 449 |
-
state_dict_embedding = load_file(embedding_path)
|
| 450 |
-
pipe.load_textual_inversion(
|
| 451 |
-
state_dict_embedding["clip_l" if "clip_l" in state_dict_embedding else "text_encoders_0"],
|
| 452 |
-
token=["<s0>", "<s1>"],
|
| 453 |
-
text_encoder=pipe.text_encoder,
|
| 454 |
-
tokenizer=pipe.tokenizer
|
| 455 |
-
)
|
| 456 |
-
pipe.load_textual_inversion(
|
| 457 |
-
state_dict_embedding["clip_g" if "clip_g" in state_dict_embedding else "text_encoders_1"],
|
| 458 |
-
token=["<s0>", "<s1>"],
|
| 459 |
-
text_encoder=pipe.text_encoder_2,
|
| 460 |
-
tokenizer=pipe.tokenizer_2
|
| 461 |
-
)
|
| 462 |
-
except Exception as e:
|
| 463 |
-
print(f"Error loading LoRA: {e}")
|
| 464 |
-
raise gr.Error(f"Failed to load LoRA: {str(e)}")
|
| 465 |
-
|
| 466 |
-
print("Processing prompt...")
|
| 467 |
-
conditioning, pooled = compel(prompt)
|
| 468 |
-
negative_conditioning, negative_pooled = compel(negative) if negative else (None, None)
|
| 469 |
-
|
| 470 |
-
# Enhanced generation parameters
|
| 471 |
-
num_inference_steps = 40 # Increased for better quality
|
| 472 |
-
|
| 473 |
-
print("Generating image...")
|
| 474 |
-
image = pipe(
|
| 475 |
-
prompt_embeds=conditioning,
|
| 476 |
-
pooled_prompt_embeds=pooled,
|
| 477 |
-
negative_prompt_embeds=negative_conditioning,
|
| 478 |
-
negative_pooled_prompt_embeds=negative_pooled,
|
| 479 |
-
width=face_image.width,
|
| 480 |
-
height=face_image.height,
|
| 481 |
-
image_embeds=face_emb if face_detected else None,
|
| 482 |
-
image=face_image,
|
| 483 |
-
strength=1-image_strength,
|
| 484 |
-
control_image=control_images,
|
| 485 |
-
num_inference_steps=num_inference_steps,
|
| 486 |
-
guidance_scale=guidance_scale,
|
| 487 |
-
controlnet_conditioning_scale=control_scales,
|
| 488 |
-
).images[0]
|
| 489 |
-
|
| 490 |
-
last_lora = repo_name
|
| 491 |
-
return image
|
| 492 |
-
|
| 493 |
def shuffle_gallery(sdxl_loras):
|
| 494 |
random.shuffle(sdxl_loras)
|
| 495 |
return [(item["image"], item["title"]) for item in sdxl_loras], sdxl_loras
|
|
@@ -505,75 +386,75 @@ def swap_gallery(order, sdxl_loras):
|
|
| 505 |
return classify_gallery(sdxl_loras)
|
| 506 |
|
| 507 |
def deselect():
|
| 508 |
-
|
| 509 |
|
| 510 |
def get_huggingface_safetensors(link):
|
| 511 |
-
|
| 512 |
-
|
| 513 |
-
|
| 514 |
-
|
| 515 |
-
|
| 516 |
-
|
| 517 |
-
|
| 518 |
-
|
| 519 |
-
|
| 520 |
-
|
| 521 |
-
|
| 522 |
-
|
| 523 |
-
|
| 524 |
-
|
| 525 |
-
|
| 526 |
-
|
| 527 |
-
|
| 528 |
-
|
| 529 |
-
|
| 530 |
-
|
| 531 |
-
|
| 532 |
|
| 533 |
def get_civitai_safetensors(link):
|
| 534 |
-
|
| 535 |
-
|
| 536 |
-
|
| 537 |
-
|
| 538 |
-
|
| 539 |
-
|
| 540 |
-
|
| 541 |
-
|
| 542 |
-
|
| 543 |
-
|
| 544 |
-
|
| 545 |
-
|
| 546 |
-
|
| 547 |
-
|
| 548 |
-
|
| 549 |
-
|
| 550 |
-
|
| 551 |
-
|
| 552 |
-
|
| 553 |
-
|
| 554 |
-
|
| 555 |
-
|
| 556 |
-
|
| 557 |
-
|
| 558 |
-
|
| 559 |
-
|
| 560 |
-
|
| 561 |
-
|
| 562 |
-
|
| 563 |
-
|
| 564 |
-
|
| 565 |
-
|
| 566 |
-
|
| 567 |
-
|
| 568 |
-
|
| 569 |
-
|
| 570 |
-
|
| 571 |
-
|
| 572 |
-
|
| 573 |
-
|
| 574 |
-
|
| 575 |
-
|
| 576 |
-
|
| 577 |
def check_custom_model(link):
|
| 578 |
if(link.startswith("https://")):
|
| 579 |
if(link.startswith("https://huggingface.co") or link.startswith("https://www.huggingface.co")):
|
|
@@ -584,6 +465,9 @@ def check_custom_model(link):
|
|
| 584 |
else:
|
| 585 |
return get_huggingface_safetensors(link)
|
| 586 |
|
|
|
|
|
|
|
|
|
|
| 587 |
def load_custom_lora(link):
|
| 588 |
if(link):
|
| 589 |
try:
|
|
@@ -609,29 +493,33 @@ def load_custom_lora(link):
|
|
| 609 |
|
| 610 |
def remove_custom_lora():
|
| 611 |
return "", gr.update(visible=False), gr.update(visible=False), None
|
| 612 |
-
|
| 613 |
-
# Build Gradio interface
|
| 614 |
with gr.Blocks(css="custom.css") as demo:
|
| 615 |
gr_sdxl_loras = gr.State(value=sdxl_loras_raw)
|
| 616 |
title = gr.HTML(
|
| 617 |
"""<h1><img src="https://i.imgur.com/DVoGw04.png">
|
| 618 |
-
<span>Face to All
|
| 619 |
font-size: 13px;
|
| 620 |
display: block;
|
| 621 |
font-weight: normal;
|
| 622 |
opacity: 0.75;
|
| 623 |
-
"
|
| 624 |
elem_id="title",
|
| 625 |
)
|
| 626 |
selected_state = gr.State()
|
| 627 |
custom_loaded_lora = gr.State()
|
| 628 |
-
|
| 629 |
with gr.Row(elem_id="main_app"):
|
| 630 |
with gr.Column(scale=4, elem_id="box_column"):
|
| 631 |
with gr.Group(elem_id="gallery_box"):
|
| 632 |
-
photo = gr.Image(label="Upload a picture
|
| 633 |
-
selected_loras = gr.Gallery(label="Selected LoRAs", height=80, show_share_button=False, visible=False, elem_id="gallery_selected")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 634 |
gallery = gr.Gallery(
|
|
|
|
| 635 |
label="Pick a style from the gallery",
|
| 636 |
allow_preview=False,
|
| 637 |
columns=4,
|
|
@@ -642,82 +530,77 @@ with gr.Blocks(css="custom.css") as demo:
|
|
| 642 |
custom_model = gr.Textbox(label="or enter a custom Hugging Face or CivitAI SDXL LoRA", placeholder="Paste Hugging Face or CivitAI model path...")
|
| 643 |
custom_model_card = gr.HTML(visible=False)
|
| 644 |
custom_model_button = gr.Button("Remove custom LoRA", visible=False)
|
| 645 |
-
|
| 646 |
with gr.Column(scale=5):
|
| 647 |
with gr.Row():
|
| 648 |
-
prompt = gr.Textbox(label="Prompt", show_label=False, lines=1, max_lines=1,
|
| 649 |
-
info="Describe your subject or scene", value="a person", elem_id="prompt")
|
| 650 |
button = gr.Button("Run", elem_id="run_button")
|
| 651 |
-
|
| 652 |
result = ImageSlider(
|
| 653 |
interactive=False, label="Generated Image", elem_id="result-image", position=0.1
|
| 654 |
)
|
| 655 |
-
|
| 656 |
with gr.Group(elem_id="share-btn-container", visible=False) as share_group:
|
| 657 |
community_icon = gr.HTML(community_icon_html)
|
| 658 |
loading_icon = gr.HTML(loading_icon_html)
|
| 659 |
share_button = gr.Button("Share to community", elem_id="share-btn")
|
| 660 |
-
|
| 661 |
with gr.Accordion("Advanced options", open=False):
|
| 662 |
-
use_multiple_faces = gr.Checkbox(label="Use multiple faces (if detected)", value=False)
|
| 663 |
negative = gr.Textbox(label="Negative Prompt")
|
| 664 |
weight = gr.Slider(0, 10, value=0.9, step=0.1, label="LoRA weight")
|
| 665 |
-
face_strength = gr.Slider(0, 2, value=0.
|
| 666 |
-
|
| 667 |
-
|
| 668 |
-
|
| 669 |
-
guidance_scale = gr.Slider(0, 50, value=8, step=0.1, label="Guidance Scale")
|
| 670 |
-
depth_control_scale = gr.Slider(0, 1, value=0.8, step=0.01, label="Zoe Depth ControlNet strength")
|
| 671 |
-
|
| 672 |
prompt_title = gr.Markdown(
|
| 673 |
value="### Click on a LoRA in the gallery to select it",
|
| 674 |
visible=True,
|
| 675 |
elem_id="selected_lora",
|
| 676 |
)
|
| 677 |
-
|
| 678 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
| 679 |
custom_model.input(
|
| 680 |
fn=load_custom_lora,
|
| 681 |
inputs=[custom_model],
|
| 682 |
outputs=[custom_model_card, custom_model_card, custom_model_button, custom_loaded_lora, gallery, prompt_title],
|
| 683 |
)
|
| 684 |
-
|
| 685 |
custom_model_button.click(
|
| 686 |
fn=remove_custom_lora,
|
| 687 |
outputs=[custom_model, custom_model_button, custom_model_card, custom_loaded_lora]
|
| 688 |
)
|
| 689 |
-
|
| 690 |
gallery.select(
|
| 691 |
fn=update_selection,
|
| 692 |
inputs=[gr_sdxl_loras, face_strength, image_strength, weight, depth_control_scale, negative],
|
| 693 |
outputs=[prompt_title, prompt, face_strength, image_strength, weight, depth_control_scale, negative, selected_state],
|
| 694 |
show_progress=False
|
| 695 |
)
|
| 696 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 697 |
prompt.submit(
|
| 698 |
fn=check_selected,
|
| 699 |
inputs=[selected_state, custom_loaded_lora],
|
| 700 |
show_progress=False
|
| 701 |
).success(
|
| 702 |
fn=run_lora,
|
| 703 |
-
inputs=[photo, prompt, negative, weight, selected_state, face_strength, image_strength,
|
| 704 |
-
guidance_scale, depth_control_scale, gr_sdxl_loras, custom_loaded_lora, use_multiple_faces],
|
| 705 |
outputs=[result, share_group],
|
| 706 |
)
|
| 707 |
-
|
| 708 |
button.click(
|
| 709 |
fn=check_selected,
|
| 710 |
inputs=[selected_state, custom_loaded_lora],
|
| 711 |
show_progress=False
|
| 712 |
).success(
|
| 713 |
fn=run_lora,
|
| 714 |
-
inputs=[photo, prompt, negative, weight, selected_state, face_strength, image_strength,
|
| 715 |
-
guidance_scale, depth_control_scale, gr_sdxl_loras, custom_loaded_lora, use_multiple_faces],
|
| 716 |
outputs=[result, share_group],
|
| 717 |
)
|
| 718 |
-
|
| 719 |
share_button.click(None, [], [], js=share_js)
|
| 720 |
-
demo.load(fn=classify_gallery, inputs=[gr_sdxl_loras], outputs=[gallery, gr_sdxl_loras])
|
| 721 |
|
| 722 |
demo.queue(default_concurrency_limit=None, api_open=True)
|
| 723 |
demo.launch(share=True)
|
|
|
|
| 38 |
|
| 39 |
from gradio_imageslider import ImageSlider
|
| 40 |
|
| 41 |
+
|
| 42 |
+
#from gradio_imageslider import ImageSlider
|
| 43 |
+
|
| 44 |
with open("sdxl_loras.json", "r") as file:
|
| 45 |
data = json.load(file)
|
| 46 |
sdxl_loras_raw = [
|
|
|
|
| 63 |
|
| 64 |
with open("defaults_data.json", "r") as file:
|
| 65 |
lora_defaults = json.load(file)
|
| 66 |
+
|
| 67 |
|
| 68 |
+
device = "cuda"
|
| 69 |
|
|
|
|
| 70 |
state_dicts = {}
|
| 71 |
+
|
| 72 |
for item in sdxl_loras_raw:
|
| 73 |
saved_name = hf_hub_download(item["repo"], item["weights"])
|
| 74 |
|
|
|
|
| 83 |
}
|
| 84 |
|
| 85 |
sdxl_loras_raw = [item for item in sdxl_loras_raw if item.get("new") != True]
|
| 86 |
+
|
| 87 |
+
# download models
|
| 88 |
hf_hub_download(
|
| 89 |
repo_id="InstantX/InstantID",
|
| 90 |
filename="ControlNetModel/config.json",
|
|
|
|
| 103 |
filename="pytorch_lora_weights.safetensors",
|
| 104 |
local_dir="/data/checkpoints",
|
| 105 |
)
|
| 106 |
+
# download antelopev2
|
| 107 |
+
#if not os.path.exists("/data/antelopev2.zip"):
|
| 108 |
+
# gdown.download(url="https://drive.google.com/file/d/18wEUfMNohBJ4K3Ly5wpTejPfDzp-8fI8/view?usp=sharing", output="/data/", quiet=False, fuzzy=True)
|
| 109 |
+
# os.system("unzip /data/antelopev2.zip -d /data/models/")
|
| 110 |
|
|
|
|
| 111 |
antelope_download = snapshot_download(repo_id="DIAMONIK7777/antelopev2", local_dir="/data/models/antelopev2")
|
| 112 |
print(antelope_download)
|
| 113 |
app = FaceAnalysis(name='antelopev2', root='/data', providers=['CPUExecutionProvider'])
|
| 114 |
+
app.prepare(ctx_id=0, det_size=(640, 640))
|
| 115 |
|
| 116 |
+
# prepare models under ./checkpoints
|
| 117 |
face_adapter = f'/data/checkpoints/ip-adapter.bin'
|
| 118 |
controlnet_path = f'/data/checkpoints/ControlNetModel'
|
| 119 |
|
| 120 |
+
# load IdentityNet
|
| 121 |
st = time.time()
|
| 122 |
identitynet = ControlNetModel.from_pretrained(controlnet_path, torch_dtype=torch.float16)
|
| 123 |
+
zoedepthnet = ControlNetModel.from_pretrained("diffusers/controlnet-zoe-depth-sdxl-1.0",torch_dtype=torch.float16)
|
| 124 |
et = time.time()
|
| 125 |
+
elapsed_time = et - st
|
| 126 |
+
print('Loading ControlNet took: ', elapsed_time, 'seconds')
|
| 127 |
st = time.time()
|
| 128 |
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
|
| 129 |
et = time.time()
|
| 130 |
+
elapsed_time = et - st
|
| 131 |
+
print('Loading VAE took: ', elapsed_time, 'seconds')
|
| 132 |
st = time.time()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 133 |
|
| 134 |
+
#pipe = StableDiffusionXLInstantIDImg2ImgPipeline.from_pretrained("stablediffusionapi/albedobase-xl-v21",
|
| 135 |
+
pipe = StableDiffusionXLInstantIDImg2ImgPipeline.from_pretrained("frankjoshua/albedobaseXL_v21",
|
| 136 |
+
vae=vae,
|
| 137 |
+
controlnet=[identitynet, zoedepthnet],
|
| 138 |
+
torch_dtype=torch.float16)
|
| 139 |
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config, use_karras_sigmas=True)
|
| 140 |
pipe.load_ip_adapter_instantid(face_adapter)
|
| 141 |
+
pipe.set_ip_adapter_scale(0.8)
|
| 142 |
et = time.time()
|
| 143 |
+
elapsed_time = et - st
|
| 144 |
+
print('Loading pipeline took: ', elapsed_time, 'seconds')
|
| 145 |
st = time.time()
|
| 146 |
+
compel = Compel(tokenizer=[pipe.tokenizer, pipe.tokenizer_2] , text_encoder=[pipe.text_encoder, pipe.text_encoder_2], returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED, requires_pooled=[False, True])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 147 |
et = time.time()
|
| 148 |
+
elapsed_time = et - st
|
| 149 |
+
print('Loading Compel took: ', elapsed_time, 'seconds')
|
| 150 |
|
| 151 |
st = time.time()
|
| 152 |
zoe = ZoeDetector.from_pretrained("lllyasviel/Annotators")
|
| 153 |
et = time.time()
|
| 154 |
+
elapsed_time = et - st
|
| 155 |
+
print('Loading Zoe took: ', elapsed_time, 'seconds')
|
| 156 |
zoe.to(device)
|
| 157 |
pipe.to(device)
|
| 158 |
|
| 159 |
last_lora = ""
|
| 160 |
last_fused = False
|
| 161 |
+
js = '''
|
| 162 |
+
var button = document.getElementById('button');
|
| 163 |
+
// Add a click event listener to the button
|
| 164 |
+
button.addEventListener('click', function() {
|
| 165 |
+
element.classList.add('selected');
|
| 166 |
+
});
|
| 167 |
+
'''
|
| 168 |
lora_archive = "/data"
|
| 169 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 170 |
def update_selection(selected_state: gr.SelectData, sdxl_loras, face_strength, image_strength, weight, depth_control_scale, negative, is_new=False):
|
| 171 |
lora_repo = sdxl_loras[selected_state.index]["repo"]
|
| 172 |
new_placeholder = "Type a prompt to use your selected LoRA"
|
|
|
|
| 175 |
|
| 176 |
for lora_list in lora_defaults:
|
| 177 |
if lora_list["model"] == sdxl_loras[selected_state.index]["repo"]:
|
| 178 |
+
face_strength = lora_list.get("face_strength", 0.85)
|
| 179 |
+
image_strength = lora_list.get("image_strength", 0.15)
|
| 180 |
+
weight = lora_list.get("weight", 0.9)
|
| 181 |
depth_control_scale = lora_list.get("depth_control_scale", 0.8)
|
| 182 |
negative = lora_list.get("negative", "")
|
| 183 |
|
|
|
|
| 198 |
selected_state
|
| 199 |
)
|
| 200 |
|
| 201 |
+
def center_crop_image_as_square(img):
|
| 202 |
+
square_size = min(img.size)
|
| 203 |
+
|
| 204 |
+
left = (img.width - square_size) / 2
|
| 205 |
+
top = (img.height - square_size) / 2
|
| 206 |
+
right = (img.width + square_size) / 2
|
| 207 |
+
bottom = (img.height + square_size) / 2
|
| 208 |
+
|
| 209 |
+
img_cropped = img.crop((left, top, right, bottom))
|
| 210 |
+
return img_cropped
|
| 211 |
+
|
| 212 |
def check_selected(selected_state, custom_lora):
|
| 213 |
if not selected_state and not custom_lora:
|
| 214 |
raise gr.Error("You must select a style")
|
| 215 |
|
| 216 |
+
def merge_incompatible_lora(full_path_lora, lora_scale):
|
| 217 |
+
for weights_file in [full_path_lora]:
|
| 218 |
+
if ";" in weights_file:
|
| 219 |
+
weights_file, multiplier = weights_file.split(";")
|
| 220 |
+
multiplier = float(multiplier)
|
| 221 |
+
else:
|
| 222 |
+
multiplier = lora_scale
|
| 223 |
+
|
| 224 |
+
lora_model, weights_sd = lora.create_network_from_weights(
|
| 225 |
+
multiplier,
|
| 226 |
+
full_path_lora,
|
| 227 |
+
pipe.vae,
|
| 228 |
+
pipe.text_encoder,
|
| 229 |
+
pipe.unet,
|
| 230 |
+
for_inference=True,
|
| 231 |
+
)
|
| 232 |
+
lora_model.merge_to(
|
| 233 |
+
pipe.text_encoder, pipe.unet, weights_sd, torch.float16, "cuda"
|
| 234 |
+
)
|
| 235 |
+
del weights_sd
|
| 236 |
+
del lora_model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 237 |
|
| 238 |
+
@spaces.GPU(duration=100)
|
| 239 |
+
def generate_image(prompt, negative, face_emb, face_image, face_kps, image_strength, guidance_scale, face_strength, depth_control_scale, repo_name, loaded_state_dict, lora_scale, sdxl_loras, selected_state_index, st):
|
| 240 |
+
print(loaded_state_dict)
|
| 241 |
+
et = time.time()
|
| 242 |
+
elapsed_time = et - st
|
| 243 |
+
print('Getting into the decorated function took: ', elapsed_time, 'seconds')
|
| 244 |
+
global last_fused, last_lora
|
| 245 |
+
print("Last LoRA: ", last_lora)
|
| 246 |
+
print("Current LoRA: ", repo_name)
|
| 247 |
+
print("Last fused: ", last_fused)
|
| 248 |
+
#prepare face zoe
|
| 249 |
st = time.time()
|
| 250 |
+
with torch.no_grad():
|
| 251 |
+
image_zoe = zoe(face_image)
|
| 252 |
+
width, height = face_kps.size
|
| 253 |
+
images = [face_kps, image_zoe.resize((height, width))]
|
| 254 |
+
et = time.time()
|
| 255 |
+
elapsed_time = et - st
|
| 256 |
+
print('Zoe Depth calculations took: ', elapsed_time, 'seconds')
|
| 257 |
+
if last_lora != repo_name:
|
| 258 |
+
if(last_fused):
|
| 259 |
+
st = time.time()
|
| 260 |
+
pipe.unfuse_lora()
|
| 261 |
+
pipe.unload_lora_weights()
|
| 262 |
+
pipe.unload_textual_inversion()
|
| 263 |
+
et = time.time()
|
| 264 |
+
elapsed_time = et - st
|
| 265 |
+
print('Unfuse and unload LoRA took: ', elapsed_time, 'seconds')
|
| 266 |
+
st = time.time()
|
| 267 |
+
pipe.load_lora_weights(loaded_state_dict)
|
| 268 |
+
pipe.fuse_lora(lora_scale)
|
| 269 |
+
et = time.time()
|
| 270 |
+
elapsed_time = et - st
|
| 271 |
+
print('Fuse and load LoRA took: ', elapsed_time, 'seconds')
|
| 272 |
+
last_fused = True
|
| 273 |
+
is_pivotal = sdxl_loras[selected_state_index]["is_pivotal"]
|
| 274 |
+
if(is_pivotal):
|
| 275 |
+
#Add the textual inversion embeddings from pivotal tuning models
|
| 276 |
+
text_embedding_name = sdxl_loras[selected_state_index]["text_embedding_weights"]
|
| 277 |
+
embedding_path = hf_hub_download(repo_id=repo_name, filename=text_embedding_name, repo_type="model")
|
| 278 |
+
state_dict_embedding = load_file(embedding_path)
|
| 279 |
+
pipe.load_textual_inversion(state_dict_embedding["clip_l" if "clip_l" in state_dict_embedding else "text_encoders_0"], token=["<s0>", "<s1>"], text_encoder=pipe.text_encoder, tokenizer=pipe.tokenizer)
|
| 280 |
+
pipe.load_textual_inversion(state_dict_embedding["clip_g" if "clip_g" in state_dict_embedding else "text_encoders_1"], token=["<s0>", "<s1>"], text_encoder=pipe.text_encoder_2, tokenizer=pipe.tokenizer_2)
|
| 281 |
+
|
| 282 |
+
print("Processing prompt...")
|
| 283 |
+
st = time.time()
|
| 284 |
+
conditioning, pooled = compel(prompt)
|
| 285 |
+
if(negative):
|
| 286 |
+
negative_conditioning, negative_pooled = compel(negative)
|
| 287 |
else:
|
| 288 |
+
negative_conditioning, negative_pooled = None, None
|
| 289 |
+
et = time.time()
|
| 290 |
+
elapsed_time = et - st
|
| 291 |
+
print('Prompt processing took: ', elapsed_time, 'seconds')
|
| 292 |
+
print("Processing image...")
|
| 293 |
+
st = time.time()
|
| 294 |
+
image = pipe(
|
| 295 |
+
prompt_embeds=conditioning,
|
| 296 |
+
pooled_prompt_embeds=pooled,
|
| 297 |
+
negative_prompt_embeds=negative_conditioning,
|
| 298 |
+
negative_pooled_prompt_embeds=negative_pooled,
|
| 299 |
+
width=1024,
|
| 300 |
+
height=1024,
|
| 301 |
+
image_embeds=face_emb,
|
| 302 |
+
image=face_image,
|
| 303 |
+
strength=1-image_strength,
|
| 304 |
+
control_image=images,
|
| 305 |
+
num_inference_steps=36,
|
| 306 |
+
guidance_scale = guidance_scale,
|
| 307 |
+
controlnet_conditioning_scale=[face_strength, depth_control_scale],
|
| 308 |
+
).images[0]
|
| 309 |
+
et = time.time()
|
| 310 |
+
elapsed_time = et - st
|
| 311 |
+
print('Image processing took: ', elapsed_time, 'seconds')
|
| 312 |
+
last_lora = repo_name
|
| 313 |
+
return image
|
| 314 |
+
|
| 315 |
+
def run_lora(face_image, prompt, negative, lora_scale, selected_state, face_strength, image_strength, guidance_scale, depth_control_scale, sdxl_loras, custom_lora, progress=gr.Progress(track_tqdm=True)):
|
| 316 |
+
print("Custom LoRA: ", custom_lora)
|
| 317 |
+
custom_lora_path = custom_lora[0] if custom_lora else None
|
| 318 |
+
selected_state_index = selected_state.index if selected_state else -1
|
| 319 |
+
st = time.time()
|
| 320 |
+
face_image = center_crop_image_as_square(face_image)
|
| 321 |
+
try:
|
| 322 |
+
face_info = app.get(cv2.cvtColor(np.array(face_image), cv2.COLOR_RGB2BGR))
|
| 323 |
+
face_info = sorted(face_info, key=lambda x:(x['bbox'][2]-x['bbox'][0])*x['bbox'][3]-x['bbox'][1])[-1] # only use the maximum face
|
| 324 |
+
face_emb = face_info['embedding']
|
| 325 |
+
face_kps = draw_kps(face_image, face_info['kps'])
|
| 326 |
+
except:
|
| 327 |
+
raise gr.Error("No face found in your image. Only face images work here. Try again")
|
| 328 |
et = time.time()
|
| 329 |
+
elapsed_time = et - st
|
| 330 |
+
print('Cropping and calculating face embeds took: ', elapsed_time, 'seconds')
|
| 331 |
|
| 332 |
st = time.time()
|
| 333 |
|
| 334 |
+
if(custom_lora_path and custom_lora[1]):
|
|
|
|
| 335 |
prompt = f"{prompt} {custom_lora[1]}"
|
| 336 |
else:
|
| 337 |
for lora_list in lora_defaults:
|
| 338 |
if lora_list["model"] == sdxl_loras[selected_state_index]["repo"]:
|
| 339 |
prompt_full = lora_list.get("prompt", None)
|
| 340 |
+
if(prompt_full):
|
| 341 |
prompt = prompt_full.replace("<subject>", prompt)
|
| 342 |
|
| 343 |
+
print("Prompt:", prompt)
|
| 344 |
+
if(prompt == ""):
|
| 345 |
+
prompt = "a person"
|
| 346 |
print(f"Executing prompt: {prompt}")
|
| 347 |
+
#print("Selected State: ", selected_state_index)
|
| 348 |
+
#print(sdxl_loras[selected_state_index]["repo"])
|
| 349 |
if negative == "":
|
| 350 |
+
negative = None
|
| 351 |
+
print("Custom Loaded LoRA: ", custom_lora_path)
|
|
|
|
|
|
|
|
|
|
| 352 |
if not selected_state and not custom_lora_path:
|
| 353 |
raise gr.Error("You must select a style")
|
| 354 |
elif custom_lora_path:
|
|
|
|
| 356 |
full_path_lora = custom_lora_path
|
| 357 |
else:
|
| 358 |
repo_name = sdxl_loras[selected_state_index]["repo"]
|
| 359 |
+
weight_name = sdxl_loras[selected_state_index]["weights"]
|
| 360 |
full_path_lora = state_dicts[repo_name]["saved_name"]
|
| 361 |
+
print("Full path LoRA ", full_path_lora)
|
| 362 |
+
#loaded_state_dict = copy.deepcopy(state_dicts[repo_name]["state_dict"])
|
| 363 |
+
cross_attention_kwargs = None
|
|
|
|
|
|
|
| 364 |
et = time.time()
|
| 365 |
+
elapsed_time = et - st
|
| 366 |
+
print('Small content processing took: ', elapsed_time, 'seconds')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 367 |
|
| 368 |
st = time.time()
|
| 369 |
+
image = generate_image(prompt, negative, face_emb, face_image, face_kps, image_strength, guidance_scale, face_strength, depth_control_scale, repo_name, full_path_lora, lora_scale, sdxl_loras, selected_state_index, st)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 370 |
return (face_image, image), gr.update(visible=True)
|
| 371 |
|
| 372 |
run_lora.zerogpu = True
|
| 373 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 374 |
def shuffle_gallery(sdxl_loras):
|
| 375 |
random.shuffle(sdxl_loras)
|
| 376 |
return [(item["image"], item["title"]) for item in sdxl_loras], sdxl_loras
|
|
|
|
| 386 |
return classify_gallery(sdxl_loras)
|
| 387 |
|
| 388 |
def deselect():
|
| 389 |
+
return gr.Gallery(selected_index=None)
|
| 390 |
|
| 391 |
def get_huggingface_safetensors(link):
|
| 392 |
+
split_link = link.split("/")
|
| 393 |
+
if(len(split_link) == 2):
|
| 394 |
+
model_card = ModelCard.load(link)
|
| 395 |
+
image_path = model_card.data.get("widget", [{}])[0].get("output", {}).get("url", None)
|
| 396 |
+
trigger_word = model_card.data.get("instance_prompt", "")
|
| 397 |
+
image_url = f"https://huggingface.co/{link}/resolve/main/{image_path}" if image_path else None
|
| 398 |
+
fs = HfFileSystem()
|
| 399 |
+
try:
|
| 400 |
+
list_of_files = fs.ls(link, detail=False)
|
| 401 |
+
for file in list_of_files:
|
| 402 |
+
if(file.endswith(".safetensors")):
|
| 403 |
+
safetensors_name = file.replace("/", "_")
|
| 404 |
+
if(not os.path.exists(f"{lora_archive}/{safetensors_name}")):
|
| 405 |
+
fs.get_file(file, lpath=f"{lora_archive}/{safetensors_name}")
|
| 406 |
+
if (not image_url and file.lower().endswith((".jpg", ".jpeg", ".png", ".webp"))):
|
| 407 |
+
image_elements = file.split("/")
|
| 408 |
+
image_url = f"https://huggingface.co/{link}/resolve/main/{image_elements[-1]}"
|
| 409 |
+
except:
|
| 410 |
+
gr.Warning("You didn't include a link neither a valid Hugging Face repository with a *.safetensors LoRA")
|
| 411 |
+
raise Exception("You didn't include a link neither a valid Hugging Face repository with a *.safetensors LoRA")
|
| 412 |
+
return split_link[1], f"{lora_archive}/{safetensors_name}", trigger_word, image_url
|
| 413 |
|
| 414 |
def get_civitai_safetensors(link):
|
| 415 |
+
link_split = link.split("civitai.com/")
|
| 416 |
+
pattern = re.compile(r'models\/(\d+)')
|
| 417 |
+
regex_match = pattern.search(link_split[1])
|
| 418 |
+
if(regex_match):
|
| 419 |
+
civitai_model_id = regex_match.group(1)
|
| 420 |
+
else:
|
| 421 |
+
gr.Warning("No CivitAI model id found in your URL")
|
| 422 |
+
raise Exception("No CivitAI model id found in your URL")
|
| 423 |
+
model_request_url = f"https://civitai.com/api/v1/models/{civitai_model_id}?token={os.getenv('CIVITAI_TOKEN')}"
|
| 424 |
+
x = requests.get(model_request_url)
|
| 425 |
+
if(x.status_code != 200):
|
| 426 |
+
raise Exception("Invalid CivitAI URL")
|
| 427 |
+
model_data = x.json()
|
| 428 |
+
#if(model_data["nsfw"] == True or model_data["nsfwLevel"] > 20):
|
| 429 |
+
# gr.Warning("The model is tagged by CivitAI as adult content and cannot be used in this shared environment.")
|
| 430 |
+
# raise Exception("The model is tagged by CivitAI as adult content and cannot be used in this shared environment.")
|
| 431 |
+
if(model_data["type"] != "LORA"):
|
| 432 |
+
gr.Warning("The model isn't tagged at CivitAI as a LoRA")
|
| 433 |
+
raise Exception("The model isn't tagged at CivitAI as a LoRA")
|
| 434 |
+
model_link_download = None
|
| 435 |
+
image_url = None
|
| 436 |
+
trigger_word = ""
|
| 437 |
+
for model in model_data["modelVersions"]:
|
| 438 |
+
if(model["baseModel"] == "SDXL 1.0"):
|
| 439 |
+
model_link_download = f"{model['downloadUrl']}/?token={os.getenv('CIVITAI_TOKEN')}"
|
| 440 |
+
safetensors_name = model["files"][0]["name"]
|
| 441 |
+
if(not os.path.exists(f"{lora_archive}/{safetensors_name}")):
|
| 442 |
+
safetensors_file_request = requests.get(model_link_download)
|
| 443 |
+
if(safetensors_file_request.status_code != 200):
|
| 444 |
+
raise Exception("Invalid CivitAI download link")
|
| 445 |
+
with open(f"{lora_archive}/{safetensors_name}", 'wb') as file:
|
| 446 |
+
file.write(safetensors_file_request.content)
|
| 447 |
+
trigger_word = model.get("trainedWords", [""])[0]
|
| 448 |
+
for image in model["images"]:
|
| 449 |
+
if(image["nsfwLevel"] == 1):
|
| 450 |
+
image_url = image["url"]
|
| 451 |
+
break
|
| 452 |
+
break
|
| 453 |
+
if(not model_link_download):
|
| 454 |
+
gr.Warning("We couldn't find a SDXL LoRA on the model you've sent")
|
| 455 |
+
raise Exception("We couldn't find a SDXL LoRA on the model you've sent")
|
| 456 |
+
return model_data["name"], f"{lora_archive}/{safetensors_name}", trigger_word, image_url
|
| 457 |
+
|
| 458 |
def check_custom_model(link):
|
| 459 |
if(link.startswith("https://")):
|
| 460 |
if(link.startswith("https://huggingface.co") or link.startswith("https://www.huggingface.co")):
|
|
|
|
| 465 |
else:
|
| 466 |
return get_huggingface_safetensors(link)
|
| 467 |
|
| 468 |
+
def show_loading_widget():
|
| 469 |
+
return gr.update(visible=True)
|
| 470 |
+
|
| 471 |
def load_custom_lora(link):
|
| 472 |
if(link):
|
| 473 |
try:
|
|
|
|
| 493 |
|
| 494 |
def remove_custom_lora():
|
| 495 |
return "", gr.update(visible=False), gr.update(visible=False), None
|
|
|
|
|
|
|
| 496 |
with gr.Blocks(css="custom.css") as demo:
|
| 497 |
gr_sdxl_loras = gr.State(value=sdxl_loras_raw)
|
| 498 |
title = gr.HTML(
|
| 499 |
"""<h1><img src="https://i.imgur.com/DVoGw04.png">
|
| 500 |
+
<span>Face to All<br><small style="
|
| 501 |
font-size: 13px;
|
| 502 |
display: block;
|
| 503 |
font-weight: normal;
|
| 504 |
opacity: 0.75;
|
| 505 |
+
">🧨 diffusers InstantID + ControlNet<br> inspired by fofr's <a href="https://github.com/fofr/cog-face-to-many" target="_blank">face-to-many</a></small></span></h1>""",
|
| 506 |
elem_id="title",
|
| 507 |
)
|
| 508 |
selected_state = gr.State()
|
| 509 |
custom_loaded_lora = gr.State()
|
|
|
|
| 510 |
with gr.Row(elem_id="main_app"):
|
| 511 |
with gr.Column(scale=4, elem_id="box_column"):
|
| 512 |
with gr.Group(elem_id="gallery_box"):
|
| 513 |
+
photo = gr.Image(label="Upload a picture of yourself", interactive=True, type="pil", height=300)
|
| 514 |
+
selected_loras = gr.Gallery(label="Selected LoRAs", height=80, show_share_button=False, visible=False, elem_id="gallery_selected", )
|
| 515 |
+
#order_gallery = gr.Radio(choices=["random", "likes"], value="random", label="Order by", elem_id="order_radio")
|
| 516 |
+
#new_gallery = gr.Gallery(
|
| 517 |
+
# label="New LoRAs",
|
| 518 |
+
# elem_id="gallery_new",
|
| 519 |
+
# columns=3,
|
| 520 |
+
# value=[(item["image"], item["title"]) for item in sdxl_loras_raw_new], allow_preview=False, show_share_button=False)
|
| 521 |
gallery = gr.Gallery(
|
| 522 |
+
#value=[(item["image"], item["title"]) for item in sdxl_loras],
|
| 523 |
label="Pick a style from the gallery",
|
| 524 |
allow_preview=False,
|
| 525 |
columns=4,
|
|
|
|
| 530 |
custom_model = gr.Textbox(label="or enter a custom Hugging Face or CivitAI SDXL LoRA", placeholder="Paste Hugging Face or CivitAI model path...")
|
| 531 |
custom_model_card = gr.HTML(visible=False)
|
| 532 |
custom_model_button = gr.Button("Remove custom LoRA", visible=False)
|
|
|
|
| 533 |
with gr.Column(scale=5):
|
| 534 |
with gr.Row():
|
| 535 |
+
prompt = gr.Textbox(label="Prompt", show_label=False, lines=1, max_lines=1, info="Describe your subject (optional)", value="a person", elem_id="prompt")
|
|
|
|
| 536 |
button = gr.Button("Run", elem_id="run_button")
|
|
|
|
| 537 |
result = ImageSlider(
|
| 538 |
interactive=False, label="Generated Image", elem_id="result-image", position=0.1
|
| 539 |
)
|
|
|
|
| 540 |
with gr.Group(elem_id="share-btn-container", visible=False) as share_group:
|
| 541 |
community_icon = gr.HTML(community_icon_html)
|
| 542 |
loading_icon = gr.HTML(loading_icon_html)
|
| 543 |
share_button = gr.Button("Share to community", elem_id="share-btn")
|
|
|
|
| 544 |
with gr.Accordion("Advanced options", open=False):
|
|
|
|
| 545 |
negative = gr.Textbox(label="Negative Prompt")
|
| 546 |
weight = gr.Slider(0, 10, value=0.9, step=0.1, label="LoRA weight")
|
| 547 |
+
face_strength = gr.Slider(0, 2, value=0.85, step=0.01, label="Face strength", info="Higher values increase the face likeness but reduce the creative liberty of the models")
|
| 548 |
+
image_strength = gr.Slider(0, 1, value=0.15, step=0.01, label="Image strength", info="Higher values increase the similarity with the structure/colors of the original photo")
|
| 549 |
+
guidance_scale = gr.Slider(0, 50, value=7, step=0.1, label="Guidance Scale")
|
| 550 |
+
depth_control_scale = gr.Slider(0, 1, value=0.8, step=0.01, label="Zoe Depth ControlNet strenght")
|
|
|
|
|
|
|
|
|
|
| 551 |
prompt_title = gr.Markdown(
|
| 552 |
value="### Click on a LoRA in the gallery to select it",
|
| 553 |
visible=True,
|
| 554 |
elem_id="selected_lora",
|
| 555 |
)
|
| 556 |
+
#order_gallery.change(
|
| 557 |
+
# fn=swap_gallery,
|
| 558 |
+
# inputs=[order_gallery, gr_sdxl_loras],
|
| 559 |
+
# outputs=[gallery, gr_sdxl_loras],
|
| 560 |
+
# queue=False
|
| 561 |
+
#)
|
| 562 |
custom_model.input(
|
| 563 |
fn=load_custom_lora,
|
| 564 |
inputs=[custom_model],
|
| 565 |
outputs=[custom_model_card, custom_model_card, custom_model_button, custom_loaded_lora, gallery, prompt_title],
|
| 566 |
)
|
|
|
|
| 567 |
custom_model_button.click(
|
| 568 |
fn=remove_custom_lora,
|
| 569 |
outputs=[custom_model, custom_model_button, custom_model_card, custom_loaded_lora]
|
| 570 |
)
|
|
|
|
| 571 |
gallery.select(
|
| 572 |
fn=update_selection,
|
| 573 |
inputs=[gr_sdxl_loras, face_strength, image_strength, weight, depth_control_scale, negative],
|
| 574 |
outputs=[prompt_title, prompt, face_strength, image_strength, weight, depth_control_scale, negative, selected_state],
|
| 575 |
show_progress=False
|
| 576 |
)
|
| 577 |
+
#new_gallery.select(
|
| 578 |
+
# fn=update_selection,
|
| 579 |
+
# inputs=[gr_sdxl_loras_new, gr.State(True)],
|
| 580 |
+
# outputs=[prompt_title, prompt, prompt, selected_state, gallery],
|
| 581 |
+
# queue=False,
|
| 582 |
+
# show_progress=False
|
| 583 |
+
#)
|
| 584 |
prompt.submit(
|
| 585 |
fn=check_selected,
|
| 586 |
inputs=[selected_state, custom_loaded_lora],
|
| 587 |
show_progress=False
|
| 588 |
).success(
|
| 589 |
fn=run_lora,
|
| 590 |
+
inputs=[photo, prompt, negative, weight, selected_state, face_strength, image_strength, guidance_scale, depth_control_scale, gr_sdxl_loras, custom_loaded_lora],
|
|
|
|
| 591 |
outputs=[result, share_group],
|
| 592 |
)
|
|
|
|
| 593 |
button.click(
|
| 594 |
fn=check_selected,
|
| 595 |
inputs=[selected_state, custom_loaded_lora],
|
| 596 |
show_progress=False
|
| 597 |
).success(
|
| 598 |
fn=run_lora,
|
| 599 |
+
inputs=[photo, prompt, negative, weight, selected_state, face_strength, image_strength, guidance_scale, depth_control_scale, gr_sdxl_loras, custom_loaded_lora],
|
|
|
|
| 600 |
outputs=[result, share_group],
|
| 601 |
)
|
|
|
|
| 602 |
share_button.click(None, [], [], js=share_js)
|
| 603 |
+
demo.load(fn=classify_gallery, inputs=[gr_sdxl_loras], outputs=[gallery, gr_sdxl_loras], js=js)
|
| 604 |
|
| 605 |
demo.queue(default_concurrency_limit=None, api_open=True)
|
| 606 |
demo.launch(share=True)
|