Spaces:
Running
Running
Delete app.py
Browse files
app.py
DELETED
@@ -1,292 +0,0 @@
|
|
1 |
-
"""Streamlit app for Presidio."""
|
2 |
-
|
3 |
-
from json import JSONEncoder
|
4 |
-
from typing import List
|
5 |
-
|
6 |
-
import pandas as pd
|
7 |
-
import spacy
|
8 |
-
import streamlit as st
|
9 |
-
from annotated_text import annotated_text
|
10 |
-
from presidio_analyzer import AnalyzerEngine, RecognizerResult, RecognizerRegistry
|
11 |
-
from presidio_analyzer.nlp_engine import NlpEngineProvider
|
12 |
-
from presidio_anonymizer import AnonymizerEngine
|
13 |
-
from presidio_anonymizer.entities import OperatorConfig
|
14 |
-
|
15 |
-
from transformers_rec import (
|
16 |
-
STANFORD_COFIGURATION,
|
17 |
-
TransformersRecognizer,
|
18 |
-
BERT_DEID_CONFIGURATION,
|
19 |
-
)
|
20 |
-
|
21 |
-
|
22 |
-
# Helper methods
|
23 |
-
@st.cache(allow_output_mutation = True)
|
24 |
-
def analyzer_engine(model_path: str):
|
25 |
-
"""Return AnalyzerEngine.
|
26 |
-
|
27 |
-
:param model_path: Which model to use for NER:
|
28 |
-
"StanfordAIMI/stanford-deidentifier-base",
|
29 |
-
"obi/deid_roberta_i2b2",
|
30 |
-
"en_core_web_lg"
|
31 |
-
"""
|
32 |
-
|
33 |
-
registry = RecognizerRegistry()
|
34 |
-
registry.load_predefined_recognizers()
|
35 |
-
|
36 |
-
# Set up NLP Engine according to the model of choice
|
37 |
-
if model_path == "en_core_web_lg":
|
38 |
-
if not spacy.util.is_package("en_core_web_lg"):
|
39 |
-
spacy.cli.download("en_core_web_lg")
|
40 |
-
nlp_configuration = {
|
41 |
-
"nlp_engine_name": "spacy",
|
42 |
-
"models": [{"lang_code": "en", "model_name": "en_core_web_lg"}],
|
43 |
-
}
|
44 |
-
else:
|
45 |
-
if not spacy.util.is_package("en_core_web_sm"):
|
46 |
-
spacy.cli.download("en_core_web_sm")
|
47 |
-
# Using a small spaCy model + a HF NER model
|
48 |
-
transformers_recognizer = TransformersRecognizer(model_path=model_path)
|
49 |
-
|
50 |
-
if model_path == "StanfordAIMI/stanford-deidentifier-base":
|
51 |
-
transformers_recognizer.load_transformer(**STANFORD_COFIGURATION)
|
52 |
-
elif model_path == "obi/deid_roberta_i2b2":
|
53 |
-
transformers_recognizer.load_transformer(**BERT_DEID_CONFIGURATION)
|
54 |
-
|
55 |
-
# Use small spaCy model, no need for both spacy and HF models
|
56 |
-
# The transformers model is used here as a recognizer, not as an NlpEngine
|
57 |
-
nlp_configuration = {
|
58 |
-
"nlp_engine_name": "spacy",
|
59 |
-
"models": [{"lang_code": "en", "model_name": "en_core_web_sm"}],
|
60 |
-
}
|
61 |
-
|
62 |
-
registry.add_recognizer(transformers_recognizer)
|
63 |
-
|
64 |
-
nlp_engine = NlpEngineProvider(nlp_configuration=nlp_configuration).create_engine()
|
65 |
-
|
66 |
-
analyzer = AnalyzerEngine(nlp_engine=nlp_engine, registry=registry)
|
67 |
-
return analyzer
|
68 |
-
|
69 |
-
|
70 |
-
@st.cache(allow_output_mutation = True)
|
71 |
-
def anonymizer_engine():
|
72 |
-
"""Return AnonymizerEngine."""
|
73 |
-
return AnonymizerEngine()
|
74 |
-
|
75 |
-
|
76 |
-
@st.cache
|
77 |
-
def get_supported_entities():
|
78 |
-
"""Return supported entities from the Analyzer Engine."""
|
79 |
-
return analyzer_engine(st_model).get_supported_entities()
|
80 |
-
|
81 |
-
|
82 |
-
def analyze(**kwargs):
|
83 |
-
"""Analyze input using Analyzer engine and input arguments (kwargs)."""
|
84 |
-
if "entities" not in kwargs or "All" in kwargs["entities"]:
|
85 |
-
kwargs["entities"] = None
|
86 |
-
return analyzer_engine(st_model).analyze(**kwargs)
|
87 |
-
|
88 |
-
|
89 |
-
def anonymize(text: str, analyze_results: List[RecognizerResult]):
|
90 |
-
"""Anonymize identified input using Presidio Anonymizer.
|
91 |
-
|
92 |
-
:param text: Full text
|
93 |
-
:param analyze_results: list of results from presidio analyzer engine
|
94 |
-
"""
|
95 |
-
|
96 |
-
if st_operator == "mask":
|
97 |
-
operator_config = {
|
98 |
-
"type": "mask",
|
99 |
-
"masking_char": st_mask_char,
|
100 |
-
"chars_to_mask": st_number_of_chars,
|
101 |
-
"from_end": False,
|
102 |
-
}
|
103 |
-
|
104 |
-
elif st_operator == "encrypt":
|
105 |
-
operator_config = {"key": st_encrypt_key}
|
106 |
-
elif st_operator == "highlight":
|
107 |
-
operator_config = {"lambda": lambda x: x}
|
108 |
-
else:
|
109 |
-
operator_config = None
|
110 |
-
|
111 |
-
if st_operator == "highlight":
|
112 |
-
operator = "custom"
|
113 |
-
else:
|
114 |
-
operator = st_operator
|
115 |
-
|
116 |
-
res = anonymizer_engine().anonymize(
|
117 |
-
text,
|
118 |
-
analyze_results,
|
119 |
-
operators={"DEFAULT": OperatorConfig(operator, operator_config)},
|
120 |
-
)
|
121 |
-
return res
|
122 |
-
|
123 |
-
|
124 |
-
def annotate(text: str, analyze_results: List[RecognizerResult]):
|
125 |
-
"""
|
126 |
-
Highlights every identified entity on top of the text.
|
127 |
-
:param text: full text
|
128 |
-
:param analyze_results: list of analyzer results.
|
129 |
-
"""
|
130 |
-
tokens = []
|
131 |
-
|
132 |
-
# Use the anonymizer to resolve overlaps
|
133 |
-
results = anonymize(text, analyze_results)
|
134 |
-
|
135 |
-
# sort by start index
|
136 |
-
results = sorted(results.items, key=lambda x: x.start)
|
137 |
-
for i, res in enumerate(results):
|
138 |
-
if i == 0:
|
139 |
-
tokens.append(text[: res.start])
|
140 |
-
|
141 |
-
# append entity text and entity type
|
142 |
-
tokens.append((text[res.start: res.end], res.entity_type))
|
143 |
-
|
144 |
-
# if another entity coming i.e. we're not at the last results element, add text up to next entity
|
145 |
-
if i != len(results) - 1:
|
146 |
-
tokens.append(text[res.end: results[i + 1].start])
|
147 |
-
# if no more entities coming, add all remaining text
|
148 |
-
else:
|
149 |
-
tokens.append(text[res.end:])
|
150 |
-
return tokens
|
151 |
-
|
152 |
-
|
153 |
-
st.set_page_config(page_title="Presidio demo", layout="wide")
|
154 |
-
|
155 |
-
# Sidebar
|
156 |
-
st.sidebar.header(
|
157 |
-
"""
|
158 |
-
PII De-Identification with Microsoft Presidio
|
159 |
-
"""
|
160 |
-
)
|
161 |
-
|
162 |
-
st.sidebar.info(
|
163 |
-
"Presidio is an open source customizable framework for PII detection and de-identification\n"
|
164 |
-
"[Code](https://aka.ms/presidio) | "
|
165 |
-
"[Tutorial](https://microsoft.github.io/presidio/tutorial/) | "
|
166 |
-
"[Installation](https://microsoft.github.io/presidio/installation/) | "
|
167 |
-
"[FAQ](https://microsoft.github.io/presidio/faq/)",
|
168 |
-
icon="ℹ️",
|
169 |
-
)
|
170 |
-
|
171 |
-
st.sidebar.markdown(
|
172 |
-
"[![Pypi Downloads](https://img.shields.io/pypi/dm/presidio-analyzer.svg)](https://img.shields.io/pypi/dm/presidio-analyzer.svg)"
|
173 |
-
"[![MIT license](https://img.shields.io/badge/license-MIT-brightgreen.svg)](http://opensource.org/licenses/MIT)"
|
174 |
-
"![GitHub Repo stars](https://img.shields.io/github/stars/microsoft/presidio?style=social)"
|
175 |
-
)
|
176 |
-
|
177 |
-
st_model = st.sidebar.selectbox(
|
178 |
-
"NER model",
|
179 |
-
[
|
180 |
-
"StanfordAIMI/stanford-deidentifier-base",
|
181 |
-
"obi/deid_roberta_i2b2",
|
182 |
-
"en_core_web_lg",
|
183 |
-
],
|
184 |
-
index=1,
|
185 |
-
)
|
186 |
-
st.sidebar.markdown("> Note: Models might take some time to download. ")
|
187 |
-
|
188 |
-
st_operator = st.sidebar.selectbox(
|
189 |
-
"De-identification approach",
|
190 |
-
["redact", "replace", "mask", "hash", "encrypt", "highlight"],
|
191 |
-
index=1,
|
192 |
-
)
|
193 |
-
|
194 |
-
if st_operator == "mask":
|
195 |
-
st_number_of_chars = st.sidebar.number_input(
|
196 |
-
"number of chars", value=15, min_value=0, max_value=100
|
197 |
-
)
|
198 |
-
st_mask_char = st.sidebar.text_input("Mask character", value="*", max_chars=1)
|
199 |
-
elif st_operator == "encrypt":
|
200 |
-
st_encrypt_key = st.sidebar.text_input("AES key", value="WmZq4t7w!z%C&F)J")
|
201 |
-
|
202 |
-
st_threshold = st.sidebar.slider(
|
203 |
-
label="Acceptance threshold", min_value=0.0, max_value=1.0, value=0.35
|
204 |
-
)
|
205 |
-
|
206 |
-
st_return_decision_process = st.sidebar.checkbox(
|
207 |
-
"Add analysis explanations to findings", value=False
|
208 |
-
)
|
209 |
-
|
210 |
-
st_entities = st.sidebar.multiselect(
|
211 |
-
label="Which entities to look for?",
|
212 |
-
options=get_supported_entities(),
|
213 |
-
default=list(get_supported_entities()),
|
214 |
-
)
|
215 |
-
|
216 |
-
# Main panel
|
217 |
-
analyzer_load_state = st.info("Starting Presidio analyzer...")
|
218 |
-
engine = analyzer_engine(model_path=st_model)
|
219 |
-
analyzer_load_state.empty()
|
220 |
-
|
221 |
-
# Read default text
|
222 |
-
with open("demo_text.txt") as f:
|
223 |
-
demo_text = f.readlines()
|
224 |
-
|
225 |
-
# Create two columns for before and after
|
226 |
-
col1, col2 = st.columns(2)
|
227 |
-
|
228 |
-
# Before:
|
229 |
-
col1.subheader("Input string:")
|
230 |
-
st_text = col1.text_area(
|
231 |
-
label="Enter text",
|
232 |
-
value="".join(demo_text),
|
233 |
-
height=400,
|
234 |
-
)
|
235 |
-
|
236 |
-
st_analyze_results = analyze(
|
237 |
-
text=st_text,
|
238 |
-
entities=st_entities,
|
239 |
-
language="en",
|
240 |
-
score_threshold=st_threshold,
|
241 |
-
return_decision_process=st_return_decision_process,
|
242 |
-
)
|
243 |
-
|
244 |
-
# After
|
245 |
-
if st_operator != "highlight":
|
246 |
-
with col2:
|
247 |
-
st.subheader(f"Output")
|
248 |
-
st_anonymize_results = anonymize(st_text, st_analyze_results)
|
249 |
-
st.text_area(label="De-identified", value=st_anonymize_results.text, height=400)
|
250 |
-
else:
|
251 |
-
st.subheader("Highlighted")
|
252 |
-
annotated_tokens = annotate(st_text, st_analyze_results)
|
253 |
-
# annotated_tokens
|
254 |
-
annotated_text(*annotated_tokens)
|
255 |
-
|
256 |
-
|
257 |
-
# json result
|
258 |
-
class ToDictEncoder(JSONEncoder):
|
259 |
-
"""Encode dict to json."""
|
260 |
-
|
261 |
-
def default(self, o):
|
262 |
-
"""Encode to JSON using to_dict."""
|
263 |
-
return o.to_dict()
|
264 |
-
|
265 |
-
|
266 |
-
# table result
|
267 |
-
st.subheader(
|
268 |
-
"Findings" if not st_return_decision_process else "Findings with decision factors"
|
269 |
-
)
|
270 |
-
if st_analyze_results:
|
271 |
-
df = pd.DataFrame.from_records([r.to_dict() for r in st_analyze_results])
|
272 |
-
df["text"] = [st_text[res.start: res.end] for res in st_analyze_results]
|
273 |
-
|
274 |
-
df_subset = df[["entity_type", "text", "start", "end", "score"]].rename(
|
275 |
-
{
|
276 |
-
"entity_type": "Entity type",
|
277 |
-
"text": "Text",
|
278 |
-
"start": "Start",
|
279 |
-
"end": "End",
|
280 |
-
"score": "Confidence",
|
281 |
-
},
|
282 |
-
axis=1,
|
283 |
-
)
|
284 |
-
df_subset["Text"] = [st_text[res.start: res.end] for res in st_analyze_results]
|
285 |
-
if st_return_decision_process:
|
286 |
-
analysis_explanation_df = pd.DataFrame.from_records(
|
287 |
-
[r.analysis_explanation.to_dict() for r in st_analyze_results]
|
288 |
-
)
|
289 |
-
df_subset = pd.concat([df_subset, analysis_explanation_df], axis=1)
|
290 |
-
st.dataframe(df_subset.reset_index(drop=True), use_container_width=True)
|
291 |
-
else:
|
292 |
-
st.text("No findings")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|