Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| import logging | |
| import numpy as np | |
| import torch | |
| from transformers import VitsModel, VitsTokenizer, pipeline | |
| from transformers import M2M100ForConditionalGeneration | |
| from tokenization_small100 import SMALL100Tokenizer | |
| device = "cuda:0" if torch.cuda.is_available() else "cpu" | |
| target_language = "fr" | |
| # load speech translation checkpoint | |
| asr_pipe = pipeline("automatic-speech-recognition", model="bofenghuang/whisper-small-cv11-french", device=device) | |
| translation_model = M2M100ForConditionalGeneration.from_pretrained("alirezamsh/small100") | |
| translation_tokenizer = SMALL100Tokenizer.from_pretrained("alirezamsh/small100", tgt_lang=target_language) | |
| # load text-to-speech checkpoint | |
| model = VitsModel.from_pretrained("facebook/mms-tts-fra") | |
| tokenizer = VitsTokenizer.from_pretrained("facebook/mms-tts-fra") | |
| def translate(audio): | |
| outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "translate"}) | |
| eng_text = outputs["text"] | |
| encoded_eng_text = translation_tokenizer(eng_text, return_tensors="pt") | |
| generated_tokens = translation_model.generate(**encoded_eng_text) | |
| translated_text = translation_tokenizer.batch_decode(generated_tokens, skip_special_tokens=True) | |
| logging.info(f"Translated Text: {translated_text}") | |
| return translated_text | |
| def synthesise(text): | |
| inputs = tokenizer(text, return_tensors="pt") | |
| with torch.no_grad(): | |
| outputs = model(inputs["input_ids"]) | |
| speech = outputs["waveform"][0] | |
| logging.info(speech) | |
| return speech.cpu() | |
| def speech_to_speech_translation(audio): | |
| translated_text = translate(audio) | |
| synthesised_speech = synthesise(translated_text) | |
| synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16) | |
| return 16000, synthesised_speech | |
| title = "Cascaded STST" | |
| description = """ | |
| Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in French. Demo uses OpenAI's [Whisper Base](https://huggingface.co/openai/whisper-base) model for ASR, the | |
| [SMaLL-100](https://huggingface.co/alirezamsh/small100) model for text to text translation and Facebook's [MMS TTS-FRA](https://huggingface.co/facebook/mms-tts-fra) for text-to-speech for french: | |
|  | |
| """ | |
| demo = gr.Blocks() | |
| mic_translate = gr.Interface( | |
| fn=speech_to_speech_translation, | |
| inputs=gr.Audio(sources=["microphone"], type="filepath"), | |
| outputs=gr.Audio(label="Generated Speech", type="numpy"), | |
| title=title, | |
| description=description, | |
| ) | |
| file_translate = gr.Interface( | |
| fn=speech_to_speech_translation, | |
| inputs=gr.Audio(sources=["upload"], type="filepath"), | |
| outputs=gr.Audio(label="Generated Speech", type="numpy"), | |
| examples=[["./example.wav"]], | |
| title=title, | |
| description=description, | |
| ) | |
| with demo: | |
| gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "Audio File"]) | |
| logging.getLogger().setLevel(logging.INFO) | |
| demo.launch() |