Spaces:
Sleeping
Sleeping
pravin0077
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -6,89 +6,95 @@ import io
|
|
6 |
from PIL import Image
|
7 |
import gradio as gr
|
8 |
|
9 |
-
#
|
10 |
hf_token = os.getenv("HUGGINGFACE_API_KEY")
|
11 |
-
if hf_token
|
12 |
-
raise ValueError("Hugging Face
|
13 |
|
14 |
-
|
15 |
-
login(token=hf_token)
|
16 |
|
17 |
-
# Define
|
18 |
language_models = {
|
19 |
-
"
|
20 |
-
"
|
21 |
-
"
|
22 |
-
"
|
23 |
-
"
|
24 |
-
"
|
25 |
-
"
|
26 |
-
"
|
27 |
-
"
|
28 |
-
"
|
29 |
-
# Add more language models as needed
|
30 |
}
|
31 |
|
32 |
-
# Function to
|
33 |
-
def
|
34 |
-
model_name = language_models
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
return pipeline("translation", model=model, tokenizer=tokenizer)
|
39 |
-
else:
|
40 |
-
raise ValueError(f"No translation model found for language code '{language_code}'.")
|
41 |
|
42 |
-
# FLUX
|
43 |
flux_API_URL = "https://api-inference.huggingface.co/models/black-forest-labs/FLUX.1-dev"
|
44 |
flux_headers = {"Authorization": f"Bearer {hf_token}"}
|
45 |
|
46 |
-
# Function for translation
|
47 |
-
def
|
|
|
48 |
try:
|
49 |
-
|
50 |
-
translator = get_translator(src_lang_code)
|
51 |
-
translation = translator(input_text, max_length=40)
|
52 |
translated_text = translation[0]['translation_text']
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
# Step 3: Generate an image with FLUX model
|
65 |
-
flux_response = requests.post(flux_API_URL, headers=flux_headers, json={"inputs": creative_text})
|
66 |
-
if flux_response.status_code == 200:
|
67 |
-
image_bytes = flux_response.content
|
68 |
image = Image.open(io.BytesIO(image_bytes))
|
|
|
69 |
else:
|
70 |
-
|
|
|
|
|
|
|
71 |
|
72 |
-
|
|
|
|
|
73 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
except Exception as e:
|
75 |
-
return
|
76 |
|
77 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
interface = gr.Interface(
|
79 |
fn=translate_generate_image_and_text,
|
80 |
inputs=[
|
81 |
-
gr.Textbox(label="
|
82 |
-
gr.
|
83 |
-
],
|
84 |
-
outputs=[
|
85 |
-
gr.Textbox(label="Translated Text"),
|
86 |
-
gr.Textbox(label="Creative Text"),
|
87 |
-
gr.Image(label="Generated Image")
|
88 |
],
|
89 |
-
|
90 |
-
|
|
|
91 |
)
|
92 |
|
93 |
-
# Launch
|
94 |
interface.launch()
|
|
|
6 |
from PIL import Image
|
7 |
import gradio as gr
|
8 |
|
9 |
+
# Retrieve the token from the environment variable
|
10 |
hf_token = os.getenv("HUGGINGFACE_API_KEY")
|
11 |
+
if not hf_token:
|
12 |
+
raise ValueError("Hugging Face token not found in environment variables.")
|
13 |
|
14 |
+
login(token=hf_token, add_to_git_credential=True)
|
|
|
15 |
|
16 |
+
# Define available languages with their respective Helsinki model names
|
17 |
language_models = {
|
18 |
+
"Abkhaz": "Helsinki-NLP/opus-mt-abk-en",
|
19 |
+
"Arabic": "Helsinki-NLP/opus-mt-ar-en",
|
20 |
+
"Azerbaijani": "Helsinki-NLP/opus-mt-az-en",
|
21 |
+
"Bengali": "Helsinki-NLP/opus-mt-bn-en",
|
22 |
+
"Chinese": "Helsinki-NLP/opus-mt-zh-en",
|
23 |
+
"Danish": "Helsinki-NLP/opus-mt-da-en",
|
24 |
+
"Finnish": "Helsinki-NLP/opus-mt-fi-en",
|
25 |
+
"French": "Helsinki-NLP/opus-mt-fr-en",
|
26 |
+
"Hindi": "Helsinki-NLP/opus-mt-hi-en",
|
27 |
+
"Tamil": "Helsinki-NLP/opus-mt-mul-en" # Using multilingual model for Tamil
|
|
|
28 |
}
|
29 |
|
30 |
+
# Function to load a translation model dynamically
|
31 |
+
def load_translation_pipeline(language):
|
32 |
+
model_name = language_models[language]
|
33 |
+
tokenizer = MarianTokenizer.from_pretrained(model_name)
|
34 |
+
model = MarianMTModel.from_pretrained(model_name)
|
35 |
+
return pipeline("translation", model=model, tokenizer=tokenizer)
|
|
|
|
|
|
|
36 |
|
37 |
+
# API credentials and endpoint for FLUX (Image generation)
|
38 |
flux_API_URL = "https://api-inference.huggingface.co/models/black-forest-labs/FLUX.1-dev"
|
39 |
flux_headers = {"Authorization": f"Bearer {hf_token}"}
|
40 |
|
41 |
+
# Function for translation
|
42 |
+
def translate_text(tamil_text, language):
|
43 |
+
translator = load_translation_pipeline(language)
|
44 |
try:
|
45 |
+
translation = translator(tamil_text, max_length=40)
|
|
|
|
|
46 |
translated_text = translation[0]['translation_text']
|
47 |
+
return translated_text
|
48 |
+
except Exception as e:
|
49 |
+
return f"An error occurred: {str(e)}"
|
50 |
+
|
51 |
+
# Function to send payload and generate an image
|
52 |
+
def generate_image(prompt):
|
53 |
+
try:
|
54 |
+
response = requests.post(flux_API_URL, headers=flux_headers, json={"inputs": prompt})
|
55 |
+
if response.status_code == 200:
|
56 |
+
image_bytes = response.content
|
|
|
|
|
|
|
|
|
|
|
57 |
image = Image.open(io.BytesIO(image_bytes))
|
58 |
+
return image
|
59 |
else:
|
60 |
+
return None
|
61 |
+
except Exception as e:
|
62 |
+
print(f"An error occurred: {e}")
|
63 |
+
return None
|
64 |
|
65 |
+
# Function for Mistral API call to generate creative text
|
66 |
+
mistral_API_URL = "https://api-inference.huggingface.co/models/mistralai/Mistral-7B-v0.1"
|
67 |
+
mistral_headers = {"Authorization": f"Bearer {hf_token}"}
|
68 |
|
69 |
+
def generate_creative_text(translated_text):
|
70 |
+
try:
|
71 |
+
response = requests.post(mistral_API_URL, headers=mistral_headers, json={"inputs": translated_text})
|
72 |
+
if response.status_code == 200:
|
73 |
+
creative_text = response.json()[0]['generated_text']
|
74 |
+
return creative_text
|
75 |
+
else:
|
76 |
+
return "Error generating creative text"
|
77 |
except Exception as e:
|
78 |
+
return None
|
79 |
|
80 |
+
# Function to handle the full workflow
|
81 |
+
def translate_generate_image_and_text(tamil_text, language):
|
82 |
+
translated_text = translate_text(tamil_text, language)
|
83 |
+
image = generate_image(translated_text)
|
84 |
+
creative_text = generate_creative_text(translated_text)
|
85 |
+
return translated_text, creative_text, image
|
86 |
+
|
87 |
+
# Create Gradio interface with language selection
|
88 |
interface = gr.Interface(
|
89 |
fn=translate_generate_image_and_text,
|
90 |
inputs=[
|
91 |
+
gr.Textbox(label="Input Text in Source Language"),
|
92 |
+
gr.Dropdown(choices=list(language_models.keys()), label="Source Language")
|
|
|
|
|
|
|
|
|
|
|
93 |
],
|
94 |
+
outputs=["text", "text", "image"],
|
95 |
+
title="Multilingual Translation, Image Generation & Creative Text",
|
96 |
+
description="Enter text to translate to English, generate an image, and create creative content based on the translation."
|
97 |
)
|
98 |
|
99 |
+
# Launch Gradio app
|
100 |
interface.launch()
|