pratikskarnik commited on
Commit
f59b209
1 Parent(s): ff61aff

added products

Browse files
Files changed (2) hide show
  1. app.py +34 -8
  2. recommendation.xlsx +0 -0
app.py CHANGED
@@ -2,22 +2,48 @@ import gradio as gr
2
  from fastai.vision.all import *
3
  import skimage
4
  import pathlib
 
5
 
6
  plt = platform.system()
7
  if plt == 'Linux': pathlib.WindowsPath = pathlib.PosixPath
8
 
9
- learn = load_learner('export.pkl')
10
 
11
- labels = learn.dls.vocab
12
- def predict(img):
13
- img = PILImage.create(img)
14
- pred,pred_idx,probs = learn.predict(img)
15
- return {labels[i]: float(probs[i]) for i in range(len(labels))}
16
 
17
  title = "Face condition Analyzer"
18
  description = "A face condition detector trained on the custom dataset with fastai. Created using Gradio and HuggingFace Spaces."
19
  examples = [['harmonal_acne.jpg'],['forehead_wrinkles.jpg'],['oily_skin.jpg']]
20
  enable_queue=True
21
 
22
- gr.Interface(fn=predict,inputs=gr.inputs.Image(shape=(512, 512)),outputs=gr.outputs.Label(num_top_classes=3),title=title,
23
- description=description,examples=examples,enable_queue=enable_queue).launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
  from fastai.vision.all import *
3
  import skimage
4
  import pathlib
5
+ import pandas as pd
6
 
7
  plt = platform.system()
8
  if plt == 'Linux': pathlib.WindowsPath = pathlib.PosixPath
9
 
10
+ # learn = load_learner('export.pkl')
11
 
12
+ # labels = learn.dls.vocab
13
+ # def predict(img):
14
+ # img = PILImage.create(img)
15
+ # pred,pred_idx,probs = learn.predict(img)
16
+ # return {labels[i]: float(probs[i]) for i in range(len(labels))}
17
 
18
  title = "Face condition Analyzer"
19
  description = "A face condition detector trained on the custom dataset with fastai. Created using Gradio and HuggingFace Spaces."
20
  examples = [['harmonal_acne.jpg'],['forehead_wrinkles.jpg'],['oily_skin.jpg']]
21
  enable_queue=True
22
 
23
+ # gr.Interface(fn=predict,inputs=gr.inputs.Image(shape=(512, 512)),outputs=gr.outputs.Label(num_top_classes=3),title=title,
24
+ # description=description,examples=examples,enable_queue=enable_queue).launch()
25
+ with gr.Blocks(title=title,description=description,examples=examples,enable_queue=enable_queue) as demo:
26
+ learn = load_learner('export.pkl')
27
+ labels = learn.dls.vocab
28
+ def predict(img):
29
+ img = PILImage.create(img)
30
+ pred,pred_idx,probs = learn.predict(img)
31
+ return {labels[i]: float(probs[i]) for i in range(len(labels))}
32
+ gr.Markdown("# Face Skin Analyzer")
33
+ gr.Markdown("A face condition detector trained on the custom dataset with fastai. Created using Gradio and HuggingFace Spaces. Kindly upload a photo of your face.")
34
+ with gr.Row():
35
+ inputs = gr.inputs.Image(shape=(512, 512))
36
+ outputs = gr.outputs.Label(num_top_classes=3)
37
+ btn = gr.Button("Predict")
38
+ btn.click(fn=predict, inputs=inputs, outputs=outputs)
39
+
40
+ df=pd.read_excel("recommendation.xlsx")
41
+ classes = df['class'].unique()
42
+ with gr.Accordion("Find your skin condition using above analyzer and see the Recommended solutions",open=False):
43
+ for c in classes:
44
+ with gr.Accordion(c,open=False):
45
+ df_temp = df[df['class']==c]
46
+ for i,current_row in df_temp.iterrows():
47
+ html_box = gr.HTML("<span><a href='{}'><img src ='{}'></a></span>".format(current_row['profit_link'],current_row['product_image']))
48
+
49
+ demo.launch()
recommendation.xlsx ADDED
Binary file (10.1 kB). View file