pratikskarnik commited on
Commit
53ee624
·
1 Parent(s): 24b268e

added himalaya products

Browse files
.ipynb_checkpoints/Face Problems-checkpoint.ipynb ADDED
The diff for this file is too large to render. See raw diff
 
Face Problems.ipynb CHANGED
@@ -1341,9 +1341,107 @@
1341
  },
1342
  {
1343
  "cell_type": "code",
1344
- "execution_count": null,
1345
  "id": "d7b76171",
1346
  "metadata": {},
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1347
  "outputs": [],
1348
  "source": []
1349
  }
 
1341
  },
1342
  {
1343
  "cell_type": "code",
1344
+ "execution_count": 16,
1345
  "id": "d7b76171",
1346
  "metadata": {},
1347
+ "outputs": [
1348
+ {
1349
+ "name": "stderr",
1350
+ "output_type": "stream",
1351
+ "text": [
1352
+ "D:\\Anaconda\\envs\\development\\lib\\site-packages\\gradio\\deprecation.py:40: UserWarning: `enable_queue` is deprecated in `Interface()`, please use it within `launch()` instead.\n",
1353
+ " warnings.warn(value)\n",
1354
+ "D:\\Anaconda\\envs\\development\\lib\\site-packages\\gradio\\deprecation.py:43: UserWarning: You have unused kwarg parameters in Blocks, please remove them: {'description': 'A face condition detector trained on the custom dataset with fastai. Created using Gradio and HuggingFace Spaces.', 'examples': [['harmonal_acne.jpg'], ['forehead_wrinkles.jpg'], ['oily_skin.jpg']]}\n",
1355
+ " warnings.warn(\n",
1356
+ "D:\\Anaconda\\envs\\development\\lib\\site-packages\\gradio\\inputs.py:256: UserWarning: Usage of gradio.inputs is deprecated, and will not be supported in the future, please import your component from gradio.components\n",
1357
+ " warnings.warn(\n",
1358
+ "D:\\Anaconda\\envs\\development\\lib\\site-packages\\gradio\\deprecation.py:40: UserWarning: `optional` parameter is deprecated, and it has no effect\n",
1359
+ " warnings.warn(value)\n",
1360
+ "D:\\Anaconda\\envs\\development\\lib\\site-packages\\gradio\\outputs.py:196: UserWarning: Usage of gradio.outputs is deprecated, and will not be supported in the future, please import your components from gradio.components\n",
1361
+ " warnings.warn(\n",
1362
+ "D:\\Anaconda\\envs\\development\\lib\\site-packages\\gradio\\deprecation.py:40: UserWarning: The 'type' parameter has been deprecated. Use the Number component instead.\n",
1363
+ " warnings.warn(value)\n"
1364
+ ]
1365
+ },
1366
+ {
1367
+ "name": "stdout",
1368
+ "output_type": "stream",
1369
+ "text": [
1370
+ "Running on local URL: http://127.0.0.1:7875\n",
1371
+ "\n",
1372
+ "To create a public link, set `share=True` in `launch()`.\n"
1373
+ ]
1374
+ },
1375
+ {
1376
+ "data": {
1377
+ "text/html": [
1378
+ "<div><iframe src=\"http://127.0.0.1:7875/\" width=\"900\" height=\"500\" allow=\"autoplay; camera; microphone;\" frameborder=\"0\" allowfullscreen></iframe></div>"
1379
+ ],
1380
+ "text/plain": [
1381
+ "<IPython.core.display.HTML object>"
1382
+ ]
1383
+ },
1384
+ "metadata": {},
1385
+ "output_type": "display_data"
1386
+ },
1387
+ {
1388
+ "data": {
1389
+ "text/plain": [
1390
+ "(<gradio.routes.App at 0x17529404130>, 'http://127.0.0.1:7875/', None)"
1391
+ ]
1392
+ },
1393
+ "execution_count": 16,
1394
+ "metadata": {},
1395
+ "output_type": "execute_result"
1396
+ }
1397
+ ],
1398
+ "source": [
1399
+ "import gradio as gr\n",
1400
+ "from fastai.vision.all import *\n",
1401
+ "import skimage\n",
1402
+ "import pathlib\n",
1403
+ "import pandas as pd\n",
1404
+ "\n",
1405
+ "plt = platform.system()\n",
1406
+ "if plt == 'Linux': pathlib.WindowsPath = pathlib.PosixPath\n",
1407
+ "title = \"Face condition Analyzer\"\n",
1408
+ "description = \"A face condition detector trained on the custom dataset with fastai. Created using Gradio and HuggingFace Spaces.\"\n",
1409
+ "examples = [['harmonal_acne.jpg'],['forehead_wrinkles.jpg'],['oily_skin.jpg']]\n",
1410
+ "enable_queue=True\n",
1411
+ "\n",
1412
+ "with gr.Blocks(title=title,description=description,examples=examples,enable_queue=enable_queue) as demo:\n",
1413
+ " learn = load_learner('export.pkl')\n",
1414
+ " labels = learn.dls.vocab\n",
1415
+ " def predict(img):\n",
1416
+ " img = PILImage.create(img)\n",
1417
+ " pred,pred_idx,probs = learn.predict(img)\n",
1418
+ " return {labels[i]: float(probs[i]) for i in range(len(labels))}\n",
1419
+ " gr.Markdown(\"# Face Skin Analyzer\")\n",
1420
+ " gr.Markdown(\"A face condition detector trained on the custom dataset with fastai. Created using Gradio and HuggingFace Spaces. Kindly upload a photo of your face.\")\n",
1421
+ " with gr.Row():\n",
1422
+ " inputs = gr.inputs.Image(shape=(512, 512))\n",
1423
+ " outputs = gr.outputs.Label(num_top_classes=3)\n",
1424
+ " btn = gr.Button(\"Predict\")\n",
1425
+ " btn.click(fn=predict, inputs=inputs, outputs=outputs)\n",
1426
+ " \n",
1427
+ " df=pd.read_excel(\"recommendation.xlsx\")\n",
1428
+ " classes = df['class'].unique()\n",
1429
+ " with gr.Accordion(\"Find your skin condition using above analyzer and see the Recommended solutions\",open=True):\n",
1430
+ " for c in classes:\n",
1431
+ " with gr.Accordion(c,open=False):\n",
1432
+ " df_temp = df[df['class']==c]\n",
1433
+ " with gr.Row():\n",
1434
+ " for i,current_row in df_temp.iterrows():\n",
1435
+ " with gr.Column():\n",
1436
+ " html_box = gr.HTML(\"<a href='{}'><img src ='{}'></a>\".format(current_row['profit_link'],current_row['product_image'])) \n",
1437
+ "demo.launch()"
1438
+ ]
1439
+ },
1440
+ {
1441
+ "cell_type": "code",
1442
+ "execution_count": null,
1443
+ "id": "e575d70d",
1444
+ "metadata": {},
1445
  "outputs": [],
1446
  "source": []
1447
  }
app.py CHANGED
@@ -6,22 +6,11 @@ import pandas as pd
6
 
7
  plt = platform.system()
8
  if plt == 'Linux': pathlib.WindowsPath = pathlib.PosixPath
9
-
10
- # learn = load_learner('export.pkl')
11
-
12
- # labels = learn.dls.vocab
13
- # def predict(img):
14
- # img = PILImage.create(img)
15
- # pred,pred_idx,probs = learn.predict(img)
16
- # return {labels[i]: float(probs[i]) for i in range(len(labels))}
17
-
18
  title = "Face condition Analyzer"
19
  description = "A face condition detector trained on the custom dataset with fastai. Created using Gradio and HuggingFace Spaces."
20
  examples = [['harmonal_acne.jpg'],['forehead_wrinkles.jpg'],['oily_skin.jpg']]
21
  enable_queue=True
22
 
23
- # gr.Interface(fn=predict,inputs=gr.inputs.Image(shape=(512, 512)),outputs=gr.outputs.Label(num_top_classes=3),title=title,
24
- # description=description,examples=examples,enable_queue=enable_queue).launch()
25
  with gr.Blocks(title=title,description=description,examples=examples,enable_queue=enable_queue) as demo:
26
  learn = load_learner('export.pkl')
27
  labels = learn.dls.vocab
@@ -39,11 +28,12 @@ with gr.Blocks(title=title,description=description,examples=examples,enable_queu
39
 
40
  df=pd.read_excel("recommendation.xlsx")
41
  classes = df['class'].unique()
42
- with gr.Accordion("Find your skin condition using above analyzer and see the Recommended solutions",open=False):
43
  for c in classes:
44
  with gr.Accordion(c,open=False):
45
  df_temp = df[df['class']==c]
46
- for i,current_row in df_temp.iterrows():
47
- html_box = gr.HTML("<span><a href='{}'><img src ='{}'></a></span>".format(current_row['profit_link'],current_row['product_image']))
48
-
 
49
  demo.launch()
 
6
 
7
  plt = platform.system()
8
  if plt == 'Linux': pathlib.WindowsPath = pathlib.PosixPath
 
 
 
 
 
 
 
 
 
9
  title = "Face condition Analyzer"
10
  description = "A face condition detector trained on the custom dataset with fastai. Created using Gradio and HuggingFace Spaces."
11
  examples = [['harmonal_acne.jpg'],['forehead_wrinkles.jpg'],['oily_skin.jpg']]
12
  enable_queue=True
13
 
 
 
14
  with gr.Blocks(title=title,description=description,examples=examples,enable_queue=enable_queue) as demo:
15
  learn = load_learner('export.pkl')
16
  labels = learn.dls.vocab
 
28
 
29
  df=pd.read_excel("recommendation.xlsx")
30
  classes = df['class'].unique()
31
+ with gr.Accordion("Find your skin condition using above analyzer and see the Recommended solutions",open=True):
32
  for c in classes:
33
  with gr.Accordion(c,open=False):
34
  df_temp = df[df['class']==c]
35
+ with gr.Row():
36
+ for i,current_row in df_temp.iterrows():
37
+ with gr.Column():
38
+ html_box = gr.HTML("<a href='{}'><img src ='{}'></a>".format(current_row['profit_link'],current_row['product_image']))
39
  demo.launch()
recommendation.xlsx CHANGED
Binary files a/recommendation.xlsx and b/recommendation.xlsx differ