pratikshahp's picture
Update app.py
10ca710 verified
# app.py
import streamlit as st
import os
from dotenv import load_dotenv
from langchain.chat_models import ChatOpenAI
# Load HuggingFace API token
load_dotenv()
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
# Initialize the HuggingFace LLM
llm = ChatOpenAI(
openai_api_key=OPENAI_API_KEY,
model_name="gpt-4o-mini",
temperature=0.7,
max_tokens=50
)
# Streamlit UI setup
st.set_page_config(page_title="🧠 HuggingFace Chatbot", page_icon="πŸ€–")
st.title("πŸ€– HuggingFace Chatbot")
st.caption("Built with Streamlit + LangChain (50-word max answers)")
# Initialize chat history
if "messages" not in st.session_state:
st.session_state.messages = [
{"role": "assistant", "content": "Hi there! Ask me anything."}
]
# Display chat messages
for msg in st.session_state.messages:
with st.chat_message(msg["role"]):
st.markdown(msg["content"])
# Chat input
if prompt := st.chat_input("Type your message here..."):
# Add user message
st.session_state.messages.append({"role": "user", "content": prompt})
with st.chat_message("user"):
st.markdown(prompt)
# Construct prompt (only user + assistant, formatted)
conversation = "You are a helpful assistant. Keep replies within 50 words.\n\n"
for msg in st.session_state.messages:
if msg["role"] == "user":
conversation += f"User: {msg['content']}\n"
elif msg["role"] == "assistant":
continue # Don't include previous assistant replies
conversation += "Assistant:" # Prompt the model to continue
# Generate model response
with st.chat_message("assistant"):
response = llm.invoke(conversation)
st.markdown(response.content)
st.session_state.messages.append({"role": "assistant", "content": response.content})