Spaces:
Sleeping
Sleeping
# app.py | |
import streamlit as st | |
import os | |
from dotenv import load_dotenv | |
from langchain.chat_models import ChatOpenAI | |
# Load HuggingFace API token | |
load_dotenv() | |
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY") | |
# Initialize the HuggingFace LLM | |
llm = ChatOpenAI( | |
openai_api_key=OPENAI_API_KEY, | |
model_name="gpt-4o-mini", | |
temperature=0.7, | |
max_tokens=50 | |
) | |
# Streamlit UI setup | |
st.set_page_config(page_title="π§ HuggingFace Chatbot", page_icon="π€") | |
st.title("π€ HuggingFace Chatbot") | |
st.caption("Built with Streamlit + LangChain (50-word max answers)") | |
# Initialize chat history | |
if "messages" not in st.session_state: | |
st.session_state.messages = [ | |
{"role": "assistant", "content": "Hi there! Ask me anything."} | |
] | |
# Display chat messages | |
for msg in st.session_state.messages: | |
with st.chat_message(msg["role"]): | |
st.markdown(msg["content"]) | |
# Chat input | |
if prompt := st.chat_input("Type your message here..."): | |
# Add user message | |
st.session_state.messages.append({"role": "user", "content": prompt}) | |
with st.chat_message("user"): | |
st.markdown(prompt) | |
# Construct prompt (only user + assistant, formatted) | |
conversation = "You are a helpful assistant. Keep replies within 50 words.\n\n" | |
for msg in st.session_state.messages: | |
if msg["role"] == "user": | |
conversation += f"User: {msg['content']}\n" | |
elif msg["role"] == "assistant": | |
continue # Don't include previous assistant replies | |
conversation += "Assistant:" # Prompt the model to continue | |
# Generate model response | |
with st.chat_message("assistant"): | |
response = llm.invoke(conversation) | |
st.markdown(response.content) | |
st.session_state.messages.append({"role": "assistant", "content": response.content}) | |