pravaah / api.py
Prathamesh Sutar
Deployment optimized
f0663fb
from fastapi import FastAPI, BackgroundTasks, HTTPException
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel
from typing import List, Optional
import json
import logging
from datetime import datetime
from email.utils import parsedate_to_datetime
# Import our modules
from scraper import fetch_hazard_tweets, fetch_custom_tweets, get_available_hazards, get_available_locations
from classifier import classify_tweets
from pg_db import init_db, upsert_hazardous_tweet
# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Initialize FastAPI app
app = FastAPI(
title="Ocean Hazard Detection API",
description="API for detecting ocean hazards from social media posts",
version="1.0.0"
)
# CORS middleware
app.add_middleware(
CORSMiddleware,
allow_origins=["*"], # Configure this properly for production
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# Initialize database
try:
init_db()
logger.info("Database initialized successfully")
except Exception as e:
logger.warning(f"Database initialization failed: {e}. API will work without database persistence.")
# Pydantic models
class TweetAnalysisRequest(BaseModel):
limit: int = 20
query: Optional[str] = None
hazard_type: Optional[str] = None
location: Optional[str] = None
days_back: int = 1
class TweetAnalysisResponse(BaseModel):
total_tweets: int
hazardous_tweets: int
results: List[dict]
processing_time: float
class HealthResponse(BaseModel):
status: str
message: str
timestamp: str
# Health check endpoint
@app.get("/", response_model=HealthResponse)
def health_check():
"""Health check endpoint"""
return HealthResponse(
status="healthy",
message="Ocean Hazard Detection API is running",
timestamp=datetime.utcnow().isoformat()
)
@app.get("/health", response_model=HealthResponse)
def health():
"""Alternative health check endpoint"""
return health_check()
@app.post("/warmup")
async def warmup_models():
"""Pre-load all models to reduce first request time"""
try:
logger.info("Starting model warmup...")
# Pre-load all models
from classifier import get_classifier
from ner import get_ner_pipeline
from sentiment import get_emotion_classifier
from translate import get_translator
classifier = get_classifier()
ner = get_ner_pipeline()
emotion_clf = get_emotion_classifier()
translator = get_translator()
# Test with sample data
test_text = "Test tweet for model warmup"
classifier(test_text, ["test", "not test"])
if ner:
ner(test_text)
emotion_clf(test_text)
translator(test_text)
logger.info("Model warmup completed successfully")
return {"status": "success", "message": "All models loaded and ready"}
except Exception as e:
logger.error(f"Model warmup failed: {str(e)}")
return {"status": "error", "message": str(e)}
# Main analysis endpoint
@app.post("/analyze", response_model=TweetAnalysisResponse)
async def analyze_tweets(request: TweetAnalysisRequest):
"""
Analyze tweets for ocean hazards
- **limit**: Number of tweets to analyze (1-50)
- **query**: Custom search query (optional)
"""
start_time = datetime.utcnow()
try:
logger.info(f"Starting analysis with limit: {request.limit}")
# Fetch tweets based on search type
if request.query:
# Use custom query if provided
from scraper import search_tweets, extract_tweets
result = search_tweets(request.query, limit=request.limit)
tweets = extract_tweets(result)
elif request.hazard_type or request.location:
# Use keyword-based search
tweets = fetch_custom_tweets(
hazard_type=request.hazard_type,
location=request.location,
limit=request.limit,
days_back=request.days_back
)
else:
# Use default hazard query
tweets = fetch_hazard_tweets(limit=request.limit)
logger.info(f"Fetched {len(tweets)} tweets")
# Classify tweets
results = classify_tweets(tweets)
logger.info(f"Classified {len(results)} tweets")
# Store hazardous tweets in database
hazardous_count = 0
try:
for r in results:
if r.get('hazardous') == 1:
hazardous_count += 1
hazards = (r.get('ner') or {}).get('hazards') or []
hazard_type = ", ".join(hazards) if hazards else "unknown"
locs = (r.get('ner') or {}).get('locations') or []
if not locs and r.get('location'):
locs = [r['location']]
location = ", ".join(locs) if locs else "unknown"
sentiment = r.get('sentiment') or {"label": "unknown", "score": 0.0}
created_at = r.get('created_at') or ""
tweet_date = ""
tweet_time = ""
if created_at:
dt = None
try:
dt = parsedate_to_datetime(created_at)
except Exception:
dt = None
if dt is None and 'T' in created_at:
try:
iso = created_at.replace('Z', '+00:00')
dt = datetime.fromisoformat(iso)
except Exception:
dt = None
if dt is not None:
tweet_date = dt.date().isoformat()
tweet_time = dt.time().strftime('%H:%M:%S')
upsert_hazardous_tweet(
tweet_url=r.get('tweet_url') or "",
hazard_type=hazard_type,
location=location,
sentiment_label=sentiment.get('label', 'unknown'),
sentiment_score=float(sentiment.get('score', 0.0)),
tweet_date=tweet_date,
tweet_time=tweet_time,
)
logger.info(f"Stored {hazardous_count} hazardous tweets in database")
except Exception as db_error:
logger.warning(f"Database storage failed: {db_error}. Results will not be persisted.")
# Calculate processing time
processing_time = (datetime.utcnow() - start_time).total_seconds()
return TweetAnalysisResponse(
total_tweets=len(results),
hazardous_tweets=hazardous_count,
results=results,
processing_time=processing_time
)
except Exception as e:
logger.error(f"Analysis failed: {str(e)}")
raise HTTPException(status_code=500, detail=str(e))
# Get stored hazardous tweets
@app.get("/hazardous-tweets")
async def get_hazardous_tweets(limit: int = 100, offset: int = 0):
"""
Get stored hazardous tweets from database
- **limit**: Maximum number of tweets to return (default: 100)
- **offset**: Number of tweets to skip (default: 0)
"""
try:
from pg_db import get_conn
with get_conn() as conn:
with conn.cursor() as cur:
cur.execute("""
SELECT tweet_url, hazard_type, location, sentiment_label,
sentiment_score, tweet_date, tweet_time, inserted_at
FROM hazardous_tweets
ORDER BY inserted_at DESC
LIMIT %s OFFSET %s
""", (limit, offset))
columns = [desc[0] for desc in cur.description]
results = [dict(zip(columns, row)) for row in cur.fetchall()]
return {
"tweets": results,
"count": len(results),
"limit": limit,
"offset": offset
}
except Exception as e:
logger.error(f"Failed to fetch hazardous tweets: {str(e)}")
raise HTTPException(status_code=500, detail=str(e))
# Get available keywords
@app.get("/keywords/hazards")
async def get_hazard_keywords():
"""Get available hazard types for keyword search"""
return {
"hazards": get_available_hazards(),
"count": len(get_available_hazards())
}
@app.get("/keywords/locations")
async def get_location_keywords():
"""Get available locations for keyword search"""
return {
"locations": get_available_locations(),
"count": len(get_available_locations())
}
# Get statistics
@app.get("/stats")
async def get_stats():
"""Get analysis statistics"""
try:
from pg_db import get_conn
with get_conn() as conn:
with conn.cursor() as cur:
# Total hazardous tweets
cur.execute("SELECT COUNT(*) FROM hazardous_tweets")
total_hazardous = cur.fetchone()[0]
# By hazard type
cur.execute("""
SELECT hazard_type, COUNT(*) as count
FROM hazardous_tweets
GROUP BY hazard_type
ORDER BY count DESC
""")
hazard_types = [{"type": row[0], "count": row[1]} for row in cur.fetchall()]
# By location
cur.execute("""
SELECT location, COUNT(*) as count
FROM hazardous_tweets
WHERE location != 'unknown'
GROUP BY location
ORDER BY count DESC
LIMIT 10
""")
locations = [{"location": row[0], "count": row[1]} for row in cur.fetchall()]
# By sentiment
cur.execute("""
SELECT sentiment_label, COUNT(*) as count
FROM hazardous_tweets
GROUP BY sentiment_label
ORDER BY count DESC
""")
sentiments = [{"sentiment": row[0], "count": row[1]} for row in cur.fetchall()]
return {
"total_hazardous_tweets": total_hazardous,
"hazard_types": hazard_types,
"top_locations": locations,
"sentiment_distribution": sentiments
}
except Exception as e:
logger.error(f"Failed to fetch statistics: {str(e)}")
raise HTTPException(status_code=500, detail=str(e))
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=8000)